1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) C E
G
A B
D O F
2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) A D P C B
3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、
CC1、DD1的中点.
A D
求证:四边形A2B2C2D2是正方形.(初二) D2 A2 A1
D1
B1
C1
B2 C2
B C
4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC
的延长线交MN于E、F.
F 求证:∠DEN=∠F. E
N C
D
A B
M 第 1 页 共 15 页
经典难题(二)
1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M. (1)求证:AH=2OM; A (2)若∠BAC=600,求证:AH=AO.(初二)
O
· H E
B C M D
2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q. G E 求证:AP=AQ.(初二) O · C
B D
M N Q P A
3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:
设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q. E C 求证:AP=AQ.(初二)
A Q M · N P
· O B
D
4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形
CBFG,点P是EF的中点.
D 求证:点P到边AB的距离等于AB的一半.(初二) G C E
P A B Q 第 2 页 共 15 页
F
经典难题(三)
1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.
求证:CE=CF.(初二)
D A
F E
B C
2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.
求证:AE=AF.(初二)
A D F
B C
E
3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.
求证:PA=PF.(初二) A D F
B P C E
4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于
B、D.求证:AB=DC,BC=AD.(初三)
A
O D B P
第 3 页 共 15 页
E C F 经典难题(四)
1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.
求:∠APB的度数.(初二)
A P B C
2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.
求证:∠PAB=∠PCB.(初二) A D
P
B C
3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)
A
D
B C
4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且 AE=CF.求证:∠DPA=∠DPC.(初二)
第 4 页 共 15 页
A F P D B E C 经典难题(五)
1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:
P ≤L<2. A
B C 2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.
A D P B C
3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.
A P D
B C 4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,
A ∠EBA=200,求∠BED的度数.
第 5 页 共 15 页
D E B C 经典难题(一)
1.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得
EOGOCO==,又CO=EO,所以CD=GF得证。 GFGHCD
2. 如下图做△DGC使与△ADP全等,可得△PDG为等边△,从而可得 △DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150 所以∠DCP=300 ,从而得出△PBC是正三角形
3.如下图连接BC1和AB1分别找其中点F,E.连接C2F与A2E并延长相交于Q点, 连接EB2并延长交C2Q于H点,连接FB2并延长交A2Q于G点,
1110
由A2E=12A1B1=2B1C1= FB2 ,EB2=2AB=2BC=FC1 ,又∠GFQ+∠Q=90和
∠GEB2+∠Q=900,所以∠GEB2=∠GFQ又∠B2FC2=∠A2EB2 , 可得△B2FC2≌△A2EB2 ,所以A2B2=B2C2 , 又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2 , 从而可得∠A2B2 C2=900 , 同理可得其他边垂直且相等,
从而得出四边形A2B2C2D2是正方形。
第 6 页 共 15 页
4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。
经典难题(二)
1.(1)延长AD到F连BF,做OG⊥AF,
又∠F=∠ACB=∠BHD,
可得BH=BF,从而可得HD=DF,
又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM
(2)连接OB,OC,既得∠BOC=1200,
从而可得∠BOM=600,
所以可得OB=2OM=AH=AO,
得证。
第 7 页 共 15 页
3.作OF⊥CD,OG⊥BE,连接OP,OA,OF,AF,OG,AG,OQ。
ADACCD2FDFD 由于,
ABAEBE2BGBG 由此可得△ADF≌△ABG,从而可得∠AFC=∠AGE。
又因为PFOA与QGOA四点共圆,可得∠AFC=∠AOP和∠AGE=∠AOQ, ∠AOP=∠AOQ,从而可得AP=AQ。
4.过E,C,F点分别作AB所在直线的高EG,CI,FH。可得PQ=
AI2BIAB,从而得证。 2EG2FH。
由△EGA≌△AIC,可得EG=AI,由△BFH≌△CBI,可得FH=BI。 从而可得PQ=
=
第 8 页 共 15 页
经典难题(三)
1.顺时针旋转△ADE,到△ABG,连接CG. 由于∠ABG=∠ADE=900+450=1350
从而可得B,G,D在一条直线上,可得△AGB≌△CGB。 推出AE=AG=AC=GC,可得△AGC为等边三角形。 ∠AGB=300,既得∠EAC=300,从而可得∠A EC=750。 又∠EFC=∠DFA=450+300=750. 可证:CE=CF。
2.连接BD作CH⊥DE,可得四边形CGDH是正方形。
由AC=CE=2GC=2CH,
可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,
第 9 页 共 15 页
又∠FAE=900+450+150=1500,
从而可知道∠F=150,从而得出AE=AF。
3.作FG⊥CD,FE⊥BE,可以得出GFEC为正方形。
令AB=Y ,BP=X ,CE=Z ,可得PC=Y-X 。 tan∠BAP=tan∠EPF=
X=YYZXZ,可得YZ=XY-X2+XZ,
即Z(Y-X)=X(Y-X) ,既得X=Z ,得出△ABP≌△PEF , 得到PA=PF ,得证 。
第 10 页 共 15 页
经典难题(四)
1. 顺时针旋转△ABP 600 ,连接PQ ,则△PBQ是正三角形。
可得△PQC是直角三角形。 所以∠APB=1500 。
2.作过P点平行于AD的直线,并选一点E,使AE∥DC,BE∥PC. 可以得出∠ABP=∠ADP=∠AEP,可得:
AEBP共圆(一边所对两角相等)。 可得∠BAP=∠BEP=∠BCP,得证。
3.在BD取一点E,使∠BCE=∠ACD,既得△BEC∽△ADC,可得:
BEAD =,即AD•BC=BE•AC, ①
BCAC 又∠ACB=∠DCE,可得△ABC∽△DEC,既得
ABDE=,即AB•CD=DE•AC, ② ACDC 由①+②可得: AB•CD+AD•BC=AC(BE+DE)= AC·BD ,得证。
第 11 页 共 15 页
4.过D作AQ⊥AE ,AG⊥CF ,由S
ADE=
SABCD2=SDFC,可得:
AEPQAEPQ=,由AE=FC。 22 可得DQ=DG,可得∠DPA=∠DPC(角平分线逆定理)。
经典难题(五)
1.(1)顺时针旋转△BPC 600 ,可得△PBE为等边三角形。
既得PA+PB+PC=AP++PE+EF要使最小只要AP,PE,EF在一条直线上, 即如下图:可得最小L=
;
第 12 页 共 15 页
(2)过P点作BC的平行线交AB,AC与点D,F。 由于∠APD>∠ATP=∠ADP,
推出AD>AP ① 又BP+DP>BP ② 和PF+FC>PC ③ 又DF=AF ④
由①②③④可得:最大L< 2 ; 由(1)和(2)既得:
≤L<2 。
2.顺时针旋转△BPC 600 ,可得△PBE为等边三角形。
既得PA+PB+PC=AP+PE+EF要使最小只要AP,PE,EF在一条直线上, 即如下图:可得最小PA+PB+PC=AF。
第 13 页 共 15 页
既得AF=14(321)2 = 23= 423 2 =
2(31)2(31) = 22622 。
=
3.顺时针旋转△ABP 900 ,可得如下图:
既得正方形边长L = (222)2(22)a = 5222a 。
第 14 页 共 15 页
4.在AB上找一点F,使∠BCF=600 ,
连接EF,DG,既得△BGC为等边三角形,
可得∠DCF=100 , ∠FCE=200 ,推出△ABE≌△ACF , 得到BE=CF , FG=GE 。
推出 : △FGE为等边三角形 ,可得∠AFE=800 ,
既得:∠DFG=400 又BD=BC=BG ,既得∠BGD=800 ,既得∠DGF=400 推得:DF=DG ,得到:△DFE≌△DGE , 从而推得:∠FED=∠BED=300 。
第 15 页 共 15 页
① ②
因篇幅问题不能全部显示,请点此查看更多更全内容