HighOrderDiscontinuousGalerkinMethodfor
ElastohydrodynamicLubricationLineContactProblems
H.Lu,M.Berzins,C.E.GoodyerandP.K.Jimack∗
SchoolofComputing,UniversityofLeeds,LS29JT,U.K.
SUMMARY
InthispaperahighorderDiscontinuousGalerkinmethodisusedtosolvesteady-stateisothermallinecontactelastohydrodynamiclubricationproblems.Thismethodisfoundtobestableacrossawiderangeofloadsandisshowntopermitaccuratesolutionsusingjustasmallnumberofdegreesoffreedomprovidedsuitablegridsareused.Acomparisonismadebetweenresultsobtainedusingthisproposedmethodandthosefromaverylargefinitedifferencecalculationinordertodemonstrate
c2000JohnWiley&Sons,excellentaccuracyforatypicalhighlyloadedtestproblem.Copyright
Ltd.keywords:
elastohydrodynamiclubrication;discontinuousGalerkin;finiteelementmethod
1.INTRODUCTION
Inmostcomplexmechanicalsystemslubricantsareusedtoreducefrictionandprotectmovingpartsagainstwear.Inmanycases,thegeometryofthecontactingelementsdeterminestheshapeofthelubricantfilm.However,inthecasesofconcentratedcontactssuchasjournalbearingsandgears,thecontactingelementsdeformelasticallydefiningthefilmthickness:thisisknownaselastohydrodynamiclubrication(EHL).NumericalsolutionsofEHLareveryimportantforindustryinthedesignandevaluationofbothlubricantsandcomponents.Thesecasesrequirethesimultaneoussolutionofbothpressureandfilmthickness,alongwiththebehaviourofthelubricantundertheseextremeconditions.
ThekeyfeaturesofanEHLsolutionarethelowpressureinletregion;arapidriseinpressurethroughthecentreofthecontact,typicallyreachingthegiga-Pascalrange;acavitationboundaryintheoutflow;and,asharppressurespikepassedthecentreofthecontact,towardstheoutflow.Ithasbeenshownthatifthisspikeisnotresolvedsufficientlywellthenthecalculatedfrictioncanbeinaccurate[1].
Thefinitedifference(FD)methodisperhapsthemostwidelyusednumericalsolutionmethod.StabilitythroughwiderangesofoperatingconditionshasbeenattainedthroughuseofthedifferentFDtechniquesinthelowandhighpressureregions,asshownbyVenner[2]
2
H.LU,M.BERZINS,C.E.GOODYER,ANDP.K.JIMACK
andNurgatetal.[3].InordertoaccelerateconvergencethemultigridmethodwasfirstemployedbyLubrechtin1986[4].ForthefastcalculationoftheelasticdeformationBrandtandLubrecht[5]developedamultilevelmulti-integrationalgorithmwhichsignificantlyreducesthecomputationalcomplexityinapproximatingdeformationsateachpointinthecontact.Basedontheaboveachievements,FDcombinedwithmultigrid[2,6,7]hasbecomethemostpopularmethodforEHLproblemssinceitisbothefficientandstable.
OthertechniquesforEHLarealsoused.Theinversemethodof[8],whichismainlysuitableforhighlyloadedcases,updatesthepressureprofilefromfilmthicknessratherthantheotherwayaround.Thecoupledmethodof[9,10]calculatesthepressureandfilmthicknesssimultaneouslyinsteadofiteratingbetweenthemandcanbeappliedwitheitherFDorFE(finiteelement)discretizations.TheFEmethodhasalsobeensuccessfullyusedtosolveincompressibleEHLcontactproblemsbyanumberofauthors,e.g.[11,12,13].ForcompressibleEHLcontactproblems,upwindingisnecessaryinordertoensurestability.Forexample,in[9],oscillationsareobservedinthecentralregioninhighlyloadedcaseswhenusingatraditionalquadraticfiniteelementmethodtodiscretizetheproblem
InrecentyearstheDiscontinuousGalerkin(DG)methodhasbecomeapopularchoiceforsolvingconvection-dominatedpartialdifferentialequations[14,15,16].Sincediscontinuityisallowedoverelementinterfaces,wegettheopportunitytostablizethehigh-ordermethodbydefininganappropriatenumericalflux.DGcaneasilyhandleirregularmeshesandthedegreeoftheapproximatingpolynomialcanbeeasilychangedfromoneelementtoanother.Inthispaper,high-orderDGisusedtosolvesmoothEHLlinecontactproblems.Ournumericalexperimentsshowthatthisapproachcangiveveryaccuratesolutionswithonlyasmallnumberofunknowns:forexampleresultsobtainedusinglessthan200unknownsareshowntobecomparabletoFDresultsobtainedusingoverhalfamillionequallyspacedpoints.
2.GOVERNINGEQUATIONS
ThemathematicalmodeloflinecontactEHLproblemstypicallyconsistsofthreeequations,shownhereusingtheusualnon-dimensionalization,describedfullyin[6].TheReynoldsequationreads
dd(ρH)
−dX,PandHaretheunknownpressureandfilmthickness,ρandηarethedensity
andviscosity,andλisadimensionlessspeedparameter.(Thelubricantrheologyishighlynon-linearinpressure:inthisworkwehaveusedtheviscosity-pressurerelationshipofRoelands[17]anddensitymodelofDowsonandHiggison[18].)Theelasticityisincludedthroughthefilmthicknessequationwhichdefinesthecontactgeometryforagivenpressuresolution:
∞
X2
ln|X−X|P(X)dX.(2)H(X)=H00+
π−∞
ηλ
Theforcebalanceequationisaconservationlawfortheappliedload,givenby:
∞
π
P(X)dX−
−∞
HIGHORDERDISCONTINUOUSGALERKINMETHODFOREHLLINECONTACTPROBLEMS
3
Forphysicalreasons,allpressuresshouldbelargerthanorequaltothevapourpressureofthelubricant(zero).ThisisnotaccountedforintheReynoldsequation,hence,intheoutletregion,thecalculatedsolutionmayhavenegativepressures.ConsequentlytheReynoldsequationisonlyvalidinthepressurizedregionand,thecavitationposition,Xcav,isthereforetreatedasafreeboundary.Theboundaryconditionsare:
dP
P(Xin)=0,P(Xcav)=0and
(7)(v|∂Ωe∩Γef+v|∂Ωf∩Γef).
2
Followingtheapproachof[14]and[15],adiscreteformoftheReynoldsequationbecomes:
a(P,v)=l(P,v),
wherea(P,v)=
(8)
v·Pdx+
Ωe
([P](v)·n−[v](P)·n)ds
Γint
Ωe∈Ph
+
andl(P,v)=
(P(v)·n−v(P)·n)ds,(9)
ΓD
(v·β)ρHdx−
Ωe
v(ρ(P−)H)(β·ne)ds
∂Ωe\\Γ−
Ωe∈Ph
−
vρ(g)H(β·n)ds+
Γ−
(v)·ngds.(10)
ΓD
c2000JohnWiley&Sons,Ltd.Copyright
Preparedusingcnmauth.cls
Commun.Numer.Meth.Engng2000;00:1–6
4
H.LU,M.BERZINS,C.E.GOODYER,ANDP.K.JIMACK
Intheaboveequations,
P−=limP(x−δβ),forx∈Γint
δ→0
(11)
andnistheouterunitnormalandn=neonΓint.
Ineachelement,Pisexpressedinthefollowingform:
Pe=
ep+1
e
ueiNi,
(12)
i=1
wherepeistheorderoftheapproximatingpolynomial,ueiaretheunknowncoefficientsand
e
Niarethelocalbasisfunctions.Thediscontinuousbasisfunctionsusedherearedescribedin[19].Notethatin(10)upwindingiseasilyimplementedbypickingtheleftvalueρ(P−)whencalculatingthenumericalflux(seethethirdtermin(10)).3.2.TheFilmThicknessEquation
Foragivenpressuredistributionthefilmthicknessmaybecalculatedasfollows:
Xcav
X2
H(X)=H00+ln|X−X|P(X)dX
πXin
NX2
=H00+ln|X−X|P(X)dX
πe=1Ωe
=H00+=H00+=H00+
X
2
(13a)(13b)(13c)(13d)(13e)
πX2
πX
2
Ne=1
ln|X−X|
Ωe
+1Np
e
e
p+1
e
ueiNi(X)dX
i=1
e=1i=1
e
Ωe
ln|X−X|Nie(X)dXuei
π
+1Npe=1i=1
e
Ki(X)uei,
e
wheretheKi(X)aredefinedby:
e
Ki(X)
=
Ωe
ln|X−X|Nie(X)dX.
(14)
e
HereKi(X)iscalculatedusingnumericalintegration:forX∈esingularquadratureis
employedsinceln|X−X|hasaweaksingularityatX=X;elsewhereGaussianquadratureissatisfactory.
3.3.TheForceBalanceEquation
Theforcebalanceequationisdiscretizedaccordingto:
Ne=1
e
p+1
Ωei=1
e
ueiNi(X)dX−
π
HIGHORDERDISCONTINUOUSGALERKINMETHODFOREHLLINECONTACTPROBLEMS
5
4.SOLUTIONPROCEDURE
Thissectiondescribesasimplesolutionprocedurethatmaybeusedonagivenmeshandwithagivenchoiceofthepolynomialdegreeoneachelement.
TheunderlyingrelaxationschemeassumesthatifXcavisgiventhenthediscreteformof(8),alongwiththefirsttwoconditionsin(4),maybewritteninthegeneralform:
L(U)=A(U)U−b(U)=0,
(16)
1NN
whereU=(u11,...,up1+1;...;u1,...,upN+1)aretheunknownpressurecoefficients.NotethatbothA(U)andb(U)dependonU.Thepressureisrelaxedaccordingto:
∂L
U←U+
∂U
isapproximatedby:
(18)
∂L
∂U
whichisafullmatrixsinceH(X)hasaglobalpressureintegral.
Thecavitationposition,Xcav,mustbechosensoastoimposethethirdconditionin(4).ThisisachievedbymovingtheentiregridaccordingtothecurrentvalueofdP
dP
dX>0thegridismovedleftandif
dX
(Xcav),
(19)
whereδisasmallpositiveconstant.
Theaboveingredientsareusedwithinthefollowingoverallsolutionprocedure.(i)(ii)(iii)(iv)(v)
StartwithaninitialchoiceofXcavandaninitialpressuredistribution.RelaxH00usingtheerrorinequation(15),asexplainedin[6]forexample.ComputethethicknessprofileH(X)from(13e).
Updatethepressuredistributionbyrepeating(18)untilconvergence.UpdatethecavitationpositionaccordingtothevalueofdP
dX(Xcav)=0isobtained.
5.NUMERICALRESULTS
InthissectionwedemonstratethepotentialoftheDGmethodbycomparingsolutionsforahighloadtestproblemagainstthoseobtainedusingastandardmulti-level,multi-integrationFDalgorithm.Itisshownin[1]thatinordertofullyresolvethepressurespikeuptohalfamillionFDgrid-pointsmayberequired.HerewecompareourDGresultsagainstincreasingresolutionsofFDgrids.FortheDGsolution16elementsareused(notofequalsize)andthepolynomialdegreeiseither10(inthepressurespikeregion)or8(elsewhere).
Figure1showsthepressureprofilecomputedforatypicalhighlyloadedcase.Theentirecontactisshownintheleftgraphwhilstadetailedviewofthepositionofthepressurespike
c2000JohnWiley&Sons,Ltd.Copyright
Preparedusingcnmauth.cls
Commun.Numer.Meth.Engng2000;00:1–6
6
1 0.9 0.8Non-dimensional pressure, P 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0-3
-2.5
H.LU,M.BERZINS,C.E.GOODYER,ANDP.K.JIMACK
FD 524289DG ???dof
1 0.9 0.8Non-dimensional pressure, P 0.7 0.6 0.5 0.4 0.3 0.2
-2-1.5-1-0.5 0 0.5Non-dimensional distance through contact, X
1
1.5
0.1 0.9
FD 524289FD 262145FD 131073FD 65537FD 16385FD 8193FD 4097FD 2049FD 1025FD 513FD 257DG ???dof
0.905 0.91 0.915Non-dimensional distance through contact, X
0.92
Figure1.PressuredistributionsobtainedusingDGandFDmethodsacrosstheentirecontact,left,
andaroundthepressurespike,right
Method
409781931638565537131073262145524289
DGFE
PeakPressure
0.90690.90840.90920.90660.90970.90970.9097
0.9169
FreeBoundaryPosition
1.0707
TableI.ComparsionofPressurePeakPositionandFreeBoundaryValues
isshownontheright.Thekeyfeaturesofinterestarethepeakvalueofpressure,itspositionandthepointatwhichthefreeboundaryoccurs.ThesevaluesareshowninTable1.ItisclearfromtheseresultsthattheDGsolutionisclosesttothehalfmillionpointFDresults.
Notethatsolutionefficiencyisnotconsideredinthiscommunication.TheFDcalculationswouldobviouslybenefitfromtheuseoflocallyrefinedmeshes,suchasusedin[1,20],whilsttheDGmethodcouldcertainlybeimplementedwithamoreefficientsolutionalgorithm(baseduponp-multigrid,[21]forexample).WhathasbeendemonstratedhoweveristhattheDGapproachcandeliververyhighaccuracyusingonlyasmallnumberofdegreesoffreedom.
6.DISCUSSION
InthispaperahighorderDGalgorithmisusedtosolvetheEHLlinecontactproblemforthefirsttimeand,unlikefortraditional(continuous)FEmethods,stabilityiseasilyobtainedthroughtheuseofasimpleupwindingstep.Ournumericalresultsshowthat,whensuitablegridsareused,highlyaccuratesolutionsmaybeobtainedwithveryfewdegreesoffreedom,thusillustratingtheexcitingpotentialofthisapproachforthesolutionofEHLproblems.Otherresultsofsimilarqualityhavebeenobtainedunderdifferentloadingconditionsandusingdifferentsolutionalgorithms(e.g.thepenaltymethoddescribedin[22]).
c2000JohnWiley&Sons,Ltd.Copyright
Preparedusingcnmauth.cls
Commun.Numer.Meth.Engng2000;00:1–6
HIGHORDERDISCONTINUOUSGALERKINMETHODFOREHLLINECONTACTPROBLEMS
7
Fortheresultsobtainedinthispaperaverycrudeadaptivestrategywasusedtoselectthemeshandthelocalpolynomialdegree.Currentlyweareinvestigatingmoresophisticatedh-p-refinementstrategiesforthismethod.Wearealsointheprocessofdevelopingamultigridversionofthesolutionalgorithmbaseduponthep-multigridmethod,describedin[21]forexample,andwillalsoconsider2-dpointcontactcases.
REFERENCES
1.GoodyerCE,FairlieR,HartDE,BerzinsM,andScalesLE.CalculationofFrictioninSteady-StateandTransientEHLSimulationsInA.Lubrechtetal.,editor,TransientProcessesinTribology:Proceedingsofthe30thLeeds-LyonSymposiumonTribology.Elsevier,2004.
2.VennerCH.MultilevelSolutionoftheEHLLineandPointContactProblems.PhDthesis,UniversityofTwente,Netherland,1991.
3.NurgatE,BerzinsMandScalesLESolvingEHLproblemsusingiterative,multigridandhomotopymethods.J.Tribol-TASME,121:28–34,1999.
4.LubrechtAA,TenNapelWE,BosmaR.Multigrid,analternativemethodforcalculatingfilmthicknessandpressureprofileinelastohydrodynamicallylubricatedlinecontacts.J.Tribol-TASME,108:28–34,1986
5.BrandtA,LubrechtAA.Multilevelmatrixmultiplicationandfastsolutionofintegralequations.J.Comput.Phys.,90:348–370,1990
6.VennerCH,LubrechtAA.MultilevelMethodsinLubrication.Elsevier,2000.
7.JingWang,ShiyueQu,PeiranYang.Simplifiedmultigridtechniqueforthenumericalsolutiontothesteady-stateandtransientEHLlinecontactsandthearbitraryentrainmentEHLpointcontacts.TribologyInternational,34:191–202,2001.
8.KwehCC,EvansHP,SnidleRW.Elastohydrodynamclubricationofheavilyloadedcircularcontacts.P.I.Mech.Eng.C-JMEC,203:133–148,1989.
9.HughesTG,ElcoateCD,EvansHP.Anovelmethodforintegratingfirst-andsecond-orderdifferentialequationsinelastohydrodynamiclubricationforthesolutionofsmoothisothermal,linecontactproblems.Int.J.Numer.Meth.Eng.,44:1099–1113,1999.
10.ElcoateCD,EvansHP,HughesTG.Onthecouplingoftheelastohydrodynamicproblem.P.I.Mech.
Eng.C-JMEC,212:307–318,1998.
11.TaylorC,O’CallaghanJF.Anumericalsolutionoftheelastohydrodynamiclubricationproblemusing
finiteelements.J.Mech.Eng.Science.14:229–237,1972.
12.RohdeSM,OhKP.Aunifiedtreatmentofthickandthinfileelastohydrodynamicproblemsbyusing
higherorderelementmethods.Proc.R.Soc.Lond.A.343:315–331,1975.
13.WuSR,OdenJT.Anoteonapplicationofadaptivefiniteelementstoelastohydrodynamiclubrication
problems.Commun.AplliedNumer.Meth.3:485–494,1987.
14.OdenJT,BabuskaIandBaumannCE.Adiscontinuoushpfiniteelementmethodfordiffusionproblems.
J.Comput.Phys.146:491–519,1998.
15.BaumannCE,OdenJT.Adiscontinuoushpfiniteelementmethodfordiffusionproblems.Comput.
Methods.Appl.Mech.Engrg.175:311–341,1998.
16.CockburnB,KarniadakisGE,ShuCW.DiscontinuousGalerkinMethods:Theory,Computationand
Applications.Springer,1999.
17.RoelandsCJA,VlugterJC,WatermannHI.Theviscositytemperaturepressurerelationshipoflubricating
oilsanditscorrelationwithchemicalconstitution.ASMEJ.BasicEngng.85:601,1963.
18.DowsonD,HigginsonGR.Elasto-hydrodynamicLubrication,TheFundamentalsofRollerandGear
Lubrication.PermagonPress,Oxford,GreatBritain,1966.
19.SzaboB,BabuskaI.IntroductiontoFiniteElementAnalysis.JohnWileyandSons,Inc,1989.
20.GoodyerCE,FairlieR,BerzinsM,andScalesLE.Adaptivemeshmethodsforelastohydrodynamic
lubrication.InECCOMASCFD2001:ComputationalFluidDynamicsConferenceProceedings.InstituteofMathematicsanditsApplications.ISBN0-905-091-12-4,2001.
21.FidkowskiKJ,DarmofalDL.Developmentofahigher-ordersolverforaerodynamicapplications.42nd
AIAAAerospaceSciencesMeetingandExhibit,AIAAPaper2004-0436,2004.
22.WuSR.ApenaltyformulationandnumericalapproximationoftheReynolds-Hertzproblemof
elastohydrodynamiclubrication.Int.J.Engng.Science.24:1001–1013,1986.
c2000JohnWiley&Sons,Ltd.Copyright
Preparedusingcnmauth.cls
Commun.Numer.Meth.Engng2000;00:1–6
因篇幅问题不能全部显示,请点此查看更多更全内容