单自由度体系受动力荷载Newmark法小程序
W = 200 kip; k = 12.2 k/in;po = 36.6 kip; t1 = 0.4 sec
.△t=0.05s
Repeat the analysis assuming zero damping.
Include both cases (zero and 2% damping) on same plot
Solution
The computer program is as followed:
p0 = 0; p1 = 36.6; p2 = 0;
t0 = 0; t1 = 0.4;
u0 = 0; v0 = 0;
dt = 0.05; % Solution time step
n = t1/dt/2;
nn = 10; % Dynamic load cycle Number
p = [p0:p1/n:p1, p1-p1/n:-p1/n:p2]; % One cycle input load
for ii = 1:72
a(1,ii) = 0;
end
p=[p,a];
t = [t0:dt:t1*nn]'; % Total time
m = 200/386; k = 12.2; zeta = 0.05; % System mass, stiffness and damping ratio
gamma = 0.5; beta = 0.25; % Define the method
omega = sqrt(k/m);
c = 2*m*omega*zeta; % Damping
[u1,v1,a1] = dynresp(m,k,c,p,dt,0,0,gamma,beta);
[u2,v2,a2] = dynresp(m,k,0,p,dt,0,0,gamma,beta);
figure
plot(t,u1,t,u2)
figure
plot(t,v1,t,v2)
figure
plot(t,a1,t,a2)
function [u,v,a] = dynresp(m,k,c,p,dt,u0,v0,gamma,beta)
% solve the dynamic response of SDOF
% u = displacement of the structural response
% v = velocity
% a = acceleration
% m = mass of the system
% k = stiffness of the system
% c = damping
% p = input dynamic load for the system
% gamma, beta = Newmark's Method selection
% t = input load duration
% u0, v0 = initial displacement and velocity
n = length(p);
% dt = t/(n-1);
u(1) = u0;
v(1) = v0;
a(1) = (p(1)-c*v0-k*u0)/m;
k1 = k+gamma*c/(beta*dt)+m/(beta*dt^2);
pm1 = m/(beta*dt)+gamma*c/beta;
pm2 = m/2/beta+dt*(gamma/2/beta-1)*c;
dp = p(2:n)-p(1:n-1);
for ii = 1:n-1
dp1(ii) = dp(ii)+pm1*v(ii)+pm2*a(ii);
du(ii) = dp1(ii)/k1;
dv(ii) = gamma*du(ii)/beta/dt-gamma*v(ii)/beta+dt*(1-gamma/2/beta)*a(ii);
da(ii) = du(ii)/beta/dt^2-v(ii)/beta/dt-a(ii)/2/beta;
u(ii+1) = u(ii)+du(ii);
v(ii+1) = v(ii)+dv(ii);
a(ii+1) = a(ii)+da(ii);
end
u = u';
v = v';
a = a';
The result:
因篇幅问题不能全部显示,请点此查看更多更全内容