2003,VOL.76,NO.17,1739–1748
Onasimplifieduntimingprocedureforsupervisorycontroloftimedautomatawhenthetimeincreasesstrictlymonotonically
MICHAELP.SPATHOPOULOS{
GivenatimedautomatonGacceptingthetimedlanguageLTafinitestatemachineG0canbeconstructed,knownastheregionautomaton,whichacceptstheuntimedlanguageUntime(LT).InthispaperweconstructanalternativefinitestatemachinewhichalsoacceptsthelanguageUntime(LT),buthasfewerstatesthanG0.Thisisshownforlanguagesofbothfiniteandinfinitetracesgiventhatthetimevaluesinthetimesequenceincreasestrictlymonotonically.Thesupervisorycontroldesignfortimedautomata,whenthesimplifieduntimingprocedureisusedandthetimeisstrictlypositive,isstudied.
1.Introduction
Timeddiscreteeventsystemsareageneralizationofdiscreteeventsystemsinwhicheacheventisconsideredtohaveoccurredatacertainpointintime.Primarily,researchinthisfieldhasconcentratedonthelogicalsequencingofeventsandabstractedawaytheactualtimingdelaysbetweenevents.However,thecorrectbe-haviourofhardreal-timesystemssuchasmanufactur-ingsystems,transportsystemsandcomputernetworksdependsontheactualdelayvaluesbetweenevents.Variousformalismshavebeendevelopedtomodeltimeddiscreteeventsystems,includingAlurandDill(1994)andBrandinandWonham(1994).WorkinBrandinandWonham(1994)correspondstodiscretetimeusingasinglesystemtimerasoppositetoAlurandDill(1994)wherethedensetimemodelincludesseveralasynchronousclocksandismoreexpressivethanotherformalismsallowingcompositionoftimedprocessesandindependenttimingconditionsforeachsystemcomponent.Here,weareconcernedwithtimedautomataasdefinedinAlurandDill(1994).
Thetimedautomatondefines(oraccepts)alanguageoftimedwords.Atimedwordisdefinedasfollows:givenanordinaryword12...n,wepaireachletteriwithanon-negativerealnumberti2R!0,subjecttothecon-ditionthatti {SystemDynamicsandControlDepartmentofMechanicalEngineering,UniversityofStrathclyde,JamesWeirBuilding,75MontroseStreet,GlasgowG11XJ,UK.e-mail:mps@mecheng.strath.ac.uk (timed)!-word,andalanguageof(timed)infinitewordsiscalleda(timed)!-language. Weinterprettitobethetimeatwhichtheeventioccurs;itisaconventioninthetheoryoftimeddiscreteeventsystemsthataneventoccursatasinglepointintime,whereasasystemmaybeinaparticularstateforanon-trivialtimeinterval. GivenatimedautomatonGacceptingthetimedlan-guageLT,itwasshowninAlurandDill(1994)thatafinitestateautomatonG0canbeconstructed,knownastheregionautomaton,whichacceptsthelanguageUntime(LT). ThemainresultofthispaperconcernsthedefinitionofafinitestateautomatonGÃthatalsoacceptsthelan-guageUntime(LT),buthassignificantlyfewerstatesthanG0andisthereforeeasiertoconstruct.Werequirethatthetimeincreasesstrictlymonotonically,whileinAlurandDill(1994)timeisfirstassumedtosatisfythesamemonotonicityconstraint(Definition3.1),thiscon-ditionislaterrelaxed.Wefirstconsidertimedautomataasacceptorsoffinitetimedwords,andin}5wegeneral-izeourresultstotimed!-words.Indeed,weneedtodistinguishlanguagesoffiniteandinfinitestringssincethederivedfiniteautomataineachcasearedifferent,whereasinAlurandDill(1994)theresultsarethesameforbothcases.Althoughtheresultaboveisofinterestincomputerscience,weshowthatourresultisusefulforthecontrolofrealtimediscrete-eventsystemsaswell. ThesecondresultconcernstheapplicationofthesimplifiedconstructionoftheautomatonGÃforthesupervisorycontroloftimeddiscreteeventsystems.SupervisorycontrolfortimeddiscreteeventsystemshasbeenstudiedinHoffmannandWong-Toi(1992),BrandinandWonham(1994),Asarinetal.(1998),LaurenceandSpathopoulos(1998)andSpathopoulos(2003).InHoffmannandWong-Toi(1992)andLaurenceandSpathopoulos(1998)themethodsofRamadgeandWonham(1987)areadaptedtoconstructasupervisorforadensereal-timediscreteeventsystem InternationalJournalofControlISSN0020–7179print/ISSN1366–5820online#2003Taylor&FrancisLtd http://www.tandf.co.uk/journalsDOI:10.1080/00207170310001628570 1740M.P.Spathopoulos modelledbyatimedautomatonusinguntimingpro-cedures.InSpathopoulos(2003)thenon-blockingsupervisorycontrolproblemwithurgencyhasbeenstudiedandinAsarinetal.(1998)thesameproblemisaddressedwithoutusinguntimingprocedures. Whenthetimeincreasesstrictlymonotonically,asisalwaysthecaseinreality,thesimplifiedautomatonderivedbelow,whichappliesforthefinitestringcase,canbeusedforthesolutionofthesupervisorycontrolproblem.Weshowthatwhenthissimplifiedtechniqueisusedandthetimeisstrictlypositiveitisnecessaryforthecontrolledbehaviourtobecomemoreconservative.Intuitivelythisistobeexpectedsinceallowingthetimetobezerogivesmoreflexibilitytothemodel. Thepaperisorganizedasfollows.In}}2and3thetimedautomataandtheconstructionoftheregion(untimed)automaton,asgiveninAlurandDill(1994),arebrieflyintroduced. Themainresultofthepaperisgivenin}4andin}5theresultisextendedforinfinitestrings.Upperboundsfortheclockregionsofthederivedautomataaregivenin}6.Thesecondresultisgivenin}7wherethesimpli-fieduntimingtechniqueisusedforthesupervisorycon-trolproblemofrealtimediscrete-eventsystems.Anillustratedexampleisusedinordertoderivethecon-ditionsunderwhichthesimplifiedconstructionresultsintheleastrestrictivecontrolledbehaviour.Finally,con-clusionsaregivenin}8.2. Thetimedautomaton InthissectionwegiveashortoverviewofthetimedautomatonasdefinedinAlurandDill(1994),wherethereaderisreferredformoredetails.Ourpurposehereisnottogiveintuitiveexplanationsofdefinitionsintimedautomataandinterestedreadersshouldbefamiliarwiththem. Forsimplicityweconsidertimedautomataasaccep-torsoffinitewords.Ourresultsareextendedforlan-guagesofinfinitewordsin}5.Definition1: AtimedautomatonisatupleG¼ðS;S;C;E;S0;SmÞ ð1Þ whereS,asusual,isafinitealphabet,Sisafinitesetofstates,CisafinitesetofclocksandEisafinitesetofedges.ThesetsS0;SmSarecalledtheinitialandfinal(oraccepting)statesetsrespectively. Anedgeisatupleðs;s0;;;C0Þ,alternativelywrittensÀÀÀÀÀÀ ÀÀCÀ:À¼!0s0 0 ð2Þ HereC0Candiswhatisknownasaclockcon-straint.Aclockconstraintisapredicate(thatis,acon-dition)builtfromtheatomicpredicatescÃq(where c2CandÃisoneof ,!or¼andq2Z)using:(not)andtheconnectives^(and)and_(or).Forinstance,ifc;d2Cthenc!1_d¼2isanexampleofapredicate. Weneedfurtherdefinitionsasfollows.Definition2:A(clock)valuationisafunction :C!R!0. Definition3:Aclockvaluation:C!R!0issaidtosatisfyaclockconstraintifreplacingeachclockcincinbyðcÞgivesatruestatement. Definition4:If:C!R!0isaclockvaluationandt2R,thenþtistheclockvaluationgivenbyðþtÞðcÞ¼ðcþtÞforallclocksc.Also,ift>0thenþtissaidtobeasuccessorof. Definition5:If:C!R!0isaclockvaluationandC0Cthen½C0¼0istheclockvaluationwhichsendsallclocksinC0tozeroandsendsalltheotherstothesamevalueas. Essentially,thetimedautomatonisaninfinitestateautomatonwhosestatesareorderedpairsðs;Þwheres2Sisastateand:C!R!0isaclockvaluation.Wewillcallsuchpairsgeneralized(orextended)states.WhenthetimedautomatonisGregardedasaninfinitestateautomaton,itsinitial(generalized)statesarethoseorderedpairsðs;Þwheres2S0andthevaluationsendseveryclocktozero.Thefinalstatesarethoseforwhichs2Sm.Thesetoftransitionsbetweengeneralizedstatesisdefinedasfollows. Giventheedgein(2)andclockvaluations;0,thereisalegaltransitionwithlabelfromðs;Þtoðs0;0Þifthereexistst>0and0¼½C0¼0ðþtÞ.Wecalltthetimejumpofthetransitionatthestates.Wealsodefinetheemptytimedwordð\";0Þ,where\"istheemptyword.Alltransactionsareofthistype,oraretrivial;thatis,thereisatransitionwithlabel\"fromeverygeneralizedstatetoitself. Itisworthmentioningagainthatitispossibletoallowzerotimejumpsinthedefinitionofatransition.ThiswasconsideredbyAlurandDill(1994)inordertoallowthesametimevaluetobeassociatedwithmanyconsecutiveeventsinthetimesequence.However,inthiscasethemainresultofthispaper,theconstructionofanuntimedautomatonG0withfewerstatesthantheregionautomatonisimpossible,sinceLemma3of}4isfalse. HavingdefinedGasastatemachine,wenowexplainhowGcanbeusedtodefineatimedlanguage.Letð1;t1Þ...ðn;tnÞbeafinitetimedword.ThenwesaythatGacceptsð1;t1Þ...ðn;tnÞifGacceptstheuntimedword12...nasastatemachineandif Supervisorycontroloftimedautomata 1741 ðs1 2 n 0;0ÞÀ!ðs1;1ÞÀ!ðs2;2ÞÁÁÁðsnÀ1;nÀ1ÞÀ!ðsn;nÞisacorrespondingacceptingpathfor12ÁÁÁn(recallthatthismeansthats02S0;sn2Smandthevaluation0sendseveryclocktozero)thentiÀtiÀ1isthetimejumpforthetransition(betweengeneralizedðsstates) !i iÀ1;iÀ1ÞÀðsi;iÞ.ThetimedlanguageacceptedbyGisthendefinedasthesetoftimedwordsacceptedbyG.IfGacceptsthetimedlanguageLT,thenwealsosaythatGacceptstheuntimedlanguageUntimeðLTÞ. 3.TheAlur–Dilluntimingconstruction Inthissectionforthesakeofcompletenesswestate brieflytheregionautomatonasconstructedinAlurandDill(1994). Thetimedautomatonhasoneimportantdisadvan-tageincomputations;evenifthestatesetSisfinite,therewillnecessarilybeinfinitelymanygeneralizedstates(assumingthereisatleastoneclock)simplybecausethereareinfinitelymanyclockvaluations.Thisproblemisavoidedbypartitioningthesetofclockvaluationsintoequivalenceclassesinsuchawaythattherearefinitelymanysuchclassesandtheessentialstructureofthetimedautomatoniscaptured. Anequivalencerelation,,isdefinedonthesetValofclockvaluationsofAhavingthefollowingtwoprop-erties:therearefinitelymanyequivalenceclasses,andifthereexistclockvaluations1,2and1with12andthereisalegaltransitionfromðs;1Þtoðs0;1Þ,thenthereisaclockvaluation2with12andalegaltransitionfromðs;2Þtoðs0;2Þ. Definition6:LetGbethetimedautomatonof(1)inDefinition1. Foreachclockx2C,letcxbethelargestintegerwithwhichxiscomparedinanyclockconstraintinanyedge. Defineanequivalencerelationonthesetofclockvaluationsasfollows:giventwovaluations;:C!R!0;iff: .forallclocksx2C,eitherintððxÞÞ¼intððxÞÞorðxÞ;ðxÞ>cx; .forallclocksx2C,ðxÞisaninteger cxifandonlyifðxÞalsosatisfiesthiscondition;.forallclocksx;y2C,ifðxÞ;ðxÞ cxandðyÞ;ðyÞ cythenfracððxÞÞ fracððyÞÞimpliesfracððxÞÞ fracððyÞÞ.Thentheequivalenceclassesdefinedbyareknownasclockregions.Ifisavaluation,thenregðÞistheclockregioncontaining.ItshouldbenotedthatC0Cifisasetofclocksthenimplies½C0¼0½C0¼0: Thefollowinglemmaisfundamentaltothemotiva-tionofthedefinitionoftheregionautomatonG0andofDefinition8of}4. Lemma1:Letr1;r2beclockregionsandlet;2r1.Ifþt2r2,forsomet!0,thenthereexistst0!0suchthatþt02r2. Proof:Wewillprovethelemmabyinductiononjfregðþa0Þja02½0;tgj.Ifthissetisemptythenr1¼r2andthelemmaisobvious.Hencewemayas-sumethatr1¼r2.ThusnecessarilyðxÞ cxforatleastonex2C.WedefineK¼fx2CjðxÞ cxandðxÞ2Zgweconsidertwocases.1.K¼1.Define t1¼minfintðxÞþ1ÀðxÞjx2CandðxÞ cxgandlet t10ÀminfintðxÞþ1ÀðxÞjx2CandðxÞ cxg Thenþt1þt10 . 2.K¼1.Chooseanypositive t1 andpositive t1 0 1Þ¼ Þ.Theresultnowfollowsfromtheinductivehypothesisappliedtoþt10;þt10 thevaluations andtÀt1inplaceoftsincejfregðþt1þa0Þja02½0;tÀt1gj 1ÞÀ ðs0;1Þthenthereexistsaclockvaluation2with21andalegaltransition ðs;!2ÞÀ ðs0;2ÞProof:ThisfollowsimmediatelyfromLemma1and thedefinitionofatransitionbetweengeneralizedstatesinatimedautomaton.& 1742M.P.Spathopoulos Fromthisresultitfollowsthatwecanreplacethesetofclockvaluationsbythesetofclockregions,thusmotivatingthefollowingdefinition. Definition7:LetGbethetimedautomatondefinedin(1)inDefinition1.WedefineG0tobethefinitestatemachine G0ðS;ðSÂRÞ;T;S0Â0;SmÂRÞ whereRisthesetofclockregionsofGand0istheclockregionwhoseuniquevaluationsendsallclockstozero. WedefinethesetofTtransitionsasfollows.Thereisatransition ðs;r 1ÞÀ!ðs0;r2Þ fortwoclockregionsr1;r2iffthereexistclockvalua-tions1;2withi2riandthereisatransitioninG betweengeneralizedstates ðs;1ÞÀ!ðs0;2Þ G0iscalledtheregionautomaton. Thefollowingisthemainresultofthissection.The proof,whichmaybeinferredfromLemma2,isomitted.Theorem1:LetLTbethetimedlanguageacceptedbyG.ThenUntimeðLTÞisthelanguageacceptedbythefi-nitestateautomatonG0. TheimportanceofG0isthattherearefinitelymanyclockregions(thisfollowsfromDefinition6andthefactthattheclocksetCisfinite),andsoG0alwayshasfinitelymanystates.4. Anewfiniteautomatonforlanguagesoffinitestrings ThispartitionofthesetofclockvaluationsValdefinedabovehasthefollowingproperties: .Therearefinitelymanyclockregions. .Let2Valand!2regðÞ.Then!andsatisfythesamesetoflockconstraints.Ift!0thenthereexistst0!0suchthatregðþtÞ¼regð!þt0Þ..if0 t1 t2 t3and2Valandregðþt1Þ¼regðþt3Þthenþt22regðþt3Þ..if!2regðÞandC0Cisasetofclocksthen½C0¼0!2reg½C0¼0Þ.Givenapartitionsatisfyingtheseproperties,andaclockregionr2R,wedefinesuccðrÞ2R,thesucces-sorregiontor2R,asfollows.Ift!0impliesregðþtÞ¼regðÞthensuccðrÞisundefined.OtherwiseletsuccðrÞ¼regðþtÞfor2randt!0chosensuchthat2=regðþtÞand0 t0 timplies thatregðþt0Þ¼regðþtÞorregðþt0Þ¼regðÞ.Owingtothethirdpropertylistedaboveandthefactthattherearefinitelymanyclockregions,suchavalueoft!0canbefound;andowingtothesecondpropertylisted,thechoiceof2risirrelevant.WewillwritesuccnðrÞ¼succðsuccnÀ1ðrÞÞforn!1. Thefollowingdefinitionintroducesthenotionofclosedandnon-closedregionsandwillbeusedinthissectionforthesimplificationoftheuntimingprocedure.Definition8:Letrandr0beclockregions.Wesaythatr0isasuccessorofrifr0containsavaluationwhichisasuccessorofavaluationlyinginr.ByLem-ma1,thisimpliesthateveryelementofrhasasucces-sorinr0.WedefinenextðrÞtobetheminimalsuccessorofr;thatis,theuniquesuccessorofrsuchthatallothersuccessorsofrarealsosuccessorsofnext(r). Ifany(andhenceevery)valuationinrmapsanyclockx2Ctoaninteger cxand2r,thennextðrÞisdefinedastheclockregioncontainingthevaluationsfþ\"j0<\"<1ÀfracððyÞÞ:8y2CsuchthatðyÞ ObservethatnextðnextðrÞÞ¼nextðrÞforallclockregionsr. Example1:Consideratimedautomatonwithtwostatess1;s2,oneclocksaxandpossibletransition 1À!s1,1 1743 BelowwegiveadifferentprocedurefordefiningtheuntimedlanguageofG.WeprovethattheclockregionsofGwhichareclosedmaybedeletedfromG0,providedcertainmodificationsaremadetothetransitionsofG0.Thus,wedefineanewfiniteautomatonGÃthathasconsiderablefewerstatesthanG0. Themainresultofthispaperisbasedonthefollow-inglemma. Lemma3: 1.SupposethatthereisatransitionofthefollowingformbetweenthestatesofG0 ðs;r 1ÞÀ!ðs0;r2Þ ð3Þ Thenthereisalsoatransition ðs;nextðr1ÞÞÀ ! ðs0 ;r2Þð4Þ 2.Conversely,theexistenceofthetransitionin(4) impliestheexistenceofthatin(3).Proof:Wefirstassumethatthetransition(3)existsandprovethat(4)does.Following(3)therearevalua-tionsifori¼1;2suchthat12r1,2¼1þt;t>0andavaluation¼½C0¼02whichmeansthat2r2.Clearlyregð2Þisasuccessorofr1andsincethetimejumptisstrictlypositiveitisalsoasuccessorofnext(r1).Thisimpliesthatthereisatransitionfromnextðr1Þtor2.Morespecificallylet0<\" !regð2Þ!r2andthisshowsthatthereexistsatransitionfromnextðr1Þtor2.Notethatitmightbethatnextðr1Þ¼regð1þ\"Þ.Theconversestatementfollowsfromthefactthatanysuccessorofnextðr1Þisalsoasuccessorofr1. Definition9:DefinethefinitestateautomatonGÃasfollows.GÃisobtainedfromG0bydeletingallstatesðs;rÞsuchthattheregionrisclosed,deletingalltransi-tionsincidenttothesestatesandaddingintransitionsoftheform ðs;nextðr 1ÞÞÀ!ðs0;nextðr2ÞÞ foreverytransitioninG0oftheform ðs;r1ÞÀ !ðs0;r2ÞThefollowingisthemainresultofthissection.Theorem2: GÃandG0acceptthesamelanguage. Proof:Letw¼1ÁÁÁnbeacceptedbyG0.This meansthatthereisasequenceoftransitionsinG0 ðs0ÞÀ!1 ðs;rn 0;1;r1ÞÁÁÁðsnÀ1nÀ1ÞÀ!ðsn;rnÞ forclockregionsriofGandwiths02S0;sn2Sm. BythedefinitionoftheautomatonGÃ,thereisasequenceoftransitionsinGà ðs1 0;nextð0ÞÀ!ðs1;nextðr1ÞÞÁÁÁðsnÀ1;nextðrnÀ1ÞÞ À!n ðsn;nextðrnÞÞ andthuswisacceptedbyGÃ. Toshowtheconverse,againletw¼1ÁÁÁnandassumethatwisacceptedbyGÃ.BythedefinitionoftheautomatonGÃ,thismeansthatthereisasequenceoftransitionsinGà ðs1 0;nextð0ÞÀ!ðs1;nextðr1ÞÞÁÁÁðsnÀ1;nextðrnÀ1ÞÞ À!n ðsn;nextðrnÞÞ ð5Þ forclockregionsriofGandwiths02S0,sn2Sm.We nowshowbyinductiononithatforalli nthereisthefollowingsequenceoftransitionsinG0,forclockregionsrj0satisfyingnextðrj0Þ¼nextðrjÞ ðs1 0;0ÞÀ!ðs1;r10 ÞÁÁÁðsiÀ1;ri i0À1ÞÀ!ðsi;ri0Þ ð6Þ Fori¼0thisistrivial.Assume(6)holdsforsomei ,thereisatransitionðsi;ri00ÞÀ!ðsiþ1;ri0þ1ÞinG0G iþ1withnextðri00Þ¼nextðriÞ¼nextðri0Þandnextðri0þ1Þ¼nextðthereisatransitionðsi;nextðri00 riþ1ÞÞÀÞi!þ.1 ByLemma3.1ðsiþ1;ri0þ1ÞinG0;henceÀbyLemma3.2thereisatransition ðsi!þ1 i;ri0Þðsiþ1;ri0þ1ÞinG0.Thuswehaveprovedtheinductivestep,andhenceprovedthatwisacceptedbyG0.&Remark:Ourresultcanbesummarizedasfollows.Foranyclosedregion,sincetimemusttakeplace(leadingtonext(r))beforeanyfurthertransition,wecanconsiderrandnext(r)tobebisimilar. Transitionsthatareenabledatexactlytheclosedregionrarecoveredbyregions‘after’r,i.e.forrbeingfx¼1g,theregionf1 1;f0 x<1gÞÀ!ðs1; f1 x<2gÞ,ðsa 1;f1 x<2gÞÀ!ðs1;f1 x<2gÞ ðsf0 x<0gÞÀb 1;!ðs2;f1 x<2gÞ 1744M.P.Spathopoulos 5. Extensionofresultstoacceptorsofinfinitewords Inthissectionweconstructanotherautomaton,similartoGÃ,inordertosimplifytheuntimingpro-cedureinthecasewherethetimedautomataareregardedasacceptorsof!-words. Definition10:AtimedBuechiautomaton(Aluranddill1994,Definition3.10)isatuple H¼ðÆ;S;C;E;S0;SmÞB wherethesymbolshavethesamemeaningsasin(1)ofDefinition1.ButHisregardedasanacceptoroftimed!-wordsasfollows:letw¼ð1;t1ÞÁÁÁði;tiÞÁÁÁbeatimed!-word.ThenHacceptswprovidedthefollowingtwoconditionshold: 1.Thereðsisaninfinitesequenceoftransitions 1i0;0ÞÀ!ðs1;t1ÞÁÁÁðsiÀ1;tiÀ1ÞÀ!ðsi;tiÞÁÁÁthroughHwiths02S0andsi2Smforinfinitelymanyvaluesofi.2.limi!1ti¼1.Thisiscalledtheprogresscondi-tion.Thetimed!-languageacceptedbyHisthendefinedtobethesetoftimed!-wordsacceptedbyH.IfHdefinesthetimed!-languageLTthenwesaythatHacceptstheuntimed!-languageUntime(LT),byanalogywithordinarytimedautomata. Lemma4:LetÁÁÁði;tiÞÁÁÁbeaninfinitetimedwordwhichdefinesapaththroughthesequenceofgeneralizedstatesÁÁÁðsi;iÞÁÁÁofH.ThenthereisawordÁÁÁði;ti0ÞÁÁÁpassingthroughthesamesequenceofstatesofHandsatisfyingtheprogressconditionifandonlyifforeveryclockx2C,wehaveiðxÞ¼0oriðxÞ>cxforinfinitelymanyvaluesofi.ThisisshowninAlurandDill(1994,Lemma4.13). Definition11:AtimedMullerautomatonisatupleM¼ðS;S;C;E;S0;FÞautomatonexceptMwhichisidenticaltoaBuechitimedthattheacceptingsetSmisre-placedbyacollectionFofsubsetsofthestatesetS,andinsteadofthecondition(1),tobeacceptedbyMatimedwordmusthaveapaththroughMwhichpassesinfinitelymanytimesthroughthesetsinPSandfinitelymanytimesthroughthesetsinSÀP,forsomesetP2F. NextwedefinetheMullerautomatonM0 ¼ðÆ;SÂR;T;S0Â0;FÞfollowingsubsetsofthestateMwhereFcontainsthesetSÂR;FcontainsallthosesubsetsofSÂRwhichintersectnon-triviallywithSmÂRandwithallsetsSÂRxforx2C,whereRxisthesetofallclockregionswhosevaluationsmaptheclockxtozeroortoanumbergreaterthancx. Theorem3: M0acceptsthesame!-languageasH. Proof:Let1ÁÁÁbeanuntimed!-word.ThenbothconditionsofDefinition10aresatisfiedforsometimesequenceÁÁÁtiÁÁÁifandonlyifthereisapathwithlabel1ÁÁÁthroughM0startingatS0Â0andalsosa-tisfyingthefollowingconditions:thepathpassesinfi-nitelyoftenthroughthestatesetSmÂRanditpassesinfinitelyoftenthroughthesetsSÂRxforallx2C,byLemma4.ThustheresultfollowsimmediatelyfromthedefinitionofM0. WemimictheconstructionofM0usingamodifiedversionofthedefinitionofnext(r). WedefineaMullerautomatonMÃobtainedfromM0inasimilarwayinwhichGÃwasobtainedfromG0.&Definition12:TheMullerautomatonMÃisdefined asMüðÆ;SÃ;TÃ;SÃ0;Sà mÞMwhere.thestatesetSÃcontainsallelementsofSÂRof theform(s,next(r)),whererisanyclockregion,oroftheformðs;rÞ,whererisaclockregionwhosevaluationssendanyclocktozero. .ThetransitionsetTÃisasfollows:foreverytran-sitionintheregionautomatonG0ðs;r oftheform 1ÞÀ!ðs0;r2ÞthereisatransitioninTÃofthe formðs;secðrÞÀ 1!ðs0;secðr2ÞÞwheretheclockregionsec(r)isdefinedtobenext(r)unlessrmapsanyclocktozero,inwhichcasesecðrÞ¼r..SÃ0¼S0Â0isthesetofinitialstates..Theacceptingstatesetsarethosewhichintersectnon-triviallywithSmÂsecðRÞandwithallsetsSÂsecðRxÞforallx2C.ThusMÑliesbetween’G0andGÃinthesensethatitisobtainedfromG0byeliminatingsomeofthenon-closedclockregions.Theorem4: HandMÃacceptthesamelanguage. Proof:SincetheclockregionsecðrÞisalwayseithernext(r)orr,Lemma3stillholdswithnext(r)replacedbysecðrÞ.Theresultthereforefollowsfromanargu-mentsimilartothatinTheorem2.&6.Upperboundsfornumbersofclockregions InAlurandDill(1994,Lemma4.5)anupperboundof jCj!2jCjÀ1 Y ð2cxþ2Þ x2C isgivenforthenumberofclockregionsofthetimedautomatonG.Thenumberofnon-closedclockregions Supervisorycontroloftimedautomata 1745 forthefinitestringcasecansimilarlybeshowntobeboundedby jCj!2jCjÀ1Y ðcxþ1Þ x2C Toprovethis,observethattheclockregionofGis uniquelyspecifiedbythefollowing: (a)foreachclockx,oneclockconstraintfromthe setfx¼cjc¼0;...cxg[fx2ðcÀ1;cÞjc¼1;...cxg [fx>cxg(b)anorderingoftheintegersf1;2;...;jCjgtoindi-cateanorderingofthenumbersfrac(x)forx2C, (c)foreachintegern2f2;3;...jCjg,whether fracðxÞ>fracðyÞorfracðxÞ¼fracðyÞ,wherexandyarethenthandnÀ1thclocksintheorder-inggivenin(b). ThereQarejCj!choicesin(b)and2 jCjÀ1 in(c).Case(a)givesclosedregionsx2Cð2cxþ2Þchoicesforallregions,butifonlyneedtobelisted,thenQthefirstsetgivenin(a)isirrelevant,givingx2Cðcxþ1Þ choices.Multiplyingtheresultsgivestheupperboundsclaimedabove.ThusreplacingG0byGÃreducestheupperboundonthenumberofstatesbyafactorof2jCj. WeconsiderthetimedautomatonexamplewithtwoclocksgiveninAlurandDill(1994,Example4.4).Theregionautomatoninvolves28clockregions,ofwhichonly10areclosed.Thereforeinthenewautomatonwemaydeletetheclosedregionsorconsiderthemtogetherwiththeassociatednon-closedregions.Infigure1,theassociatednon-closedregionsjust‘after’theclosedregionsareshownusingarrows.The10(non-closed)regionsneededforthenewfiniteautomatonareillu-stratedinfigure1usingboldnumbers.Notethatonly2and5arelinesegments.Thederivedupperboundsareratherconservative.Thus,inpracticeandforspecificproblemsthenon-closedregionsaremuchfewerthan theclosedones.Thisresultsinderivingsignificantlyfewerextendedstatesforthenewfiniteautomaton.Itisnotdifficulttoconcludethatthenumberofnon-closedclockregionsintheinfinitestringcaseisbounded byjCj!2jCjÀ1Qx2Cðcxþ2Þ.ThusreplacingG0byMà reducesagaintheupperboundonthenumberofstatesbyafactorofalmost2jCj.Fortheaboveexampleswemustnowincludeallclosedregionsassociatedwiththeclockaxisxandyandillustratedinfigure1as1i–9i.ThisallowsthevaluationstoberesetinfinitelymanytimestozerorequiredbyLemma4.Now19clockregionsareneeded. 7.Onsupervisorycontrolfordensereal-timediscrete-eventsystemsInthissectiontheapplicationofthederivedsimpli-fiedtechniquetothesupervisorycontroldesignanditseffectinobtainingtheleastrestrictivecontrolledbehav-iouraregiven. ForsimplicityweconsiderthetimedautomatonA¼ðS;s0;Æ;E;CÞsimilartotheonedefinedin(1)butwithoutaccepting(marked)states.Inthissection,weareonlyinterestedintimedautomataasacceptorsoflanguagesoffinitetimedwords.WeassumethatAistimedeterministic;thatis,itsatisfiesthefollowingcon-dition;besideshavingonlyoneinitialstate,foranysodefinedextendedstatedðs;Þ,where:C!R!0aretheclockvaluations,andforanyevent2Æthereisamaxi-mumofoneedgeðs;s0;;;C0ÞinAsuchthatsatisfiestheclockconstraint.Thisimpliesthatforanytimedwordð1;t1ÞÁÁÁðn;tnÞthereisamaximumofonepathstartingattheinitialstates0overthetimedwordð1;t1ÞÁÁÁðn;tnÞthroughA. WedenoteOthesetofextendedstatesofAandasinthecaseofafinitestateautomaton,wepartitiontheeventalphabetintocontrollableanduncontrollableevents:ƼÆc[Æu.ThecontrolfunctionforAisdefinedas:OÂÆ!f0;1gsatisfyingðe;Þ¼1if2Æuandeisanyextendedstate.WecallthepairðA;Þacontrolledtimedautomaton.WedefinethetimedlanguageLtimedðA;Þtobethesetofalltimedwordsð1;t1ÞÁÁÁðn;tnÞsuchthatthereisapath ðsð1;t1Þ ðn;tnÞ 0;0ÞÀ!ðs1;1ÞÁÁÁÀ!ðsn;nÞ wheretheclockvaluation0sendsallclockstozero, satisfyingtheconditionðsiÀ1;iÀ1þti;iÞ¼1foralli.Ifsuchapathexistswesaythattheextendedstatesðsi;iÞareaccessibleunder. LetF(forforbidden)beasetofextendedstates(possiblyinfinite,sincethenumberofvaluationsareinfinite)ofA.Thesupervisorycontrolproblemthatwearedealingisthefollowing(forbiddencontrolproblem): 1746M.P.Spathopoulos Findthecontrolfunctionmsuchthateveryelementof FisinaccessibleundermandsuchthatLtimedðA;Þismaximalforallsuchcontrolfunctionsm. Forsimplicitythenon-blockingconditionisnotincludedassumingthatthelanguagesareclosed.TheinterestedreaderisreferredtoSpathopoulos(2003)forthenon-blockingforbiddencontrolproblem. Ithasbeenshown(HoffmanandWong-Toi1992,LaurenceandSpathopoulos1988)thatthiscanbesolvedconsideringthecontrolproblemforthefinitestateautomatonUntime(A)(asdefinedinthefollowingdefinition)providedthattheforbiddenstatesetFsatis-fiesacertainconditionstatedinTheorem5. Definition13:LetRbethesetofclockregionsofA.ThenthefinitestateautomatonUntime(A)hasstatesetSÂR,initialstateðs0;0Þ,eventalphabetS[fgandtransitionsðs;rÞÀ oftwokinds.Therearetransitions !ðs;succðrÞÞfromeverystateðs;rÞwheresucc(r)isthesuccessorregiontorandtherearetran-sitionsðs;rÞÀ !ðs0;½C0¼0ðr0ÞÞforeveryedgeðs;s0;;;C0ÞinAsuchthattheelementsoftheclockregionrsatisfytheclockconstraint. Remark:TheautomatonUntime(A)issimilartoG0wheretheeventthatmodelsthe‘timepassage’hasbeenaddedinthealphabet.Basicallyweusethetime-abstracttransitionsystemforwhichthesetofeventsisÆ[fg.Thetimepassageistreatedinthispaperasanuncontrollableevent.ThereaderisreferredtoSpathopoulous(2003)wherethenotionofurgencyisintroducedandthetimepassagemaybedefinedasacontrollableeventaswell. ItcanbeshownthatAtimedeterministicimpliesUntime(A)deterministic.Thiswasthereasonforrequir-ingAtobetimedeterministic. Itisusefultomakethefollowingdefinition:ifðs;Þisanextendedstatethenletðs;Þ¼ðs;regðÞÞ.Lemma5: (1)Ifthereisalegaltransitionðs;ÞÀ !ðs0;0ÞinA withtimejumptthenthereisapath ðs;regðÞÞÀ! ðs;succðregðÞÞÞÀ!ÁÁÁÀ! ðs;succnðregðÞÞÞÀ! ðs0;regð0ÞÞ throughUntime(A)forsuccnðregðÞÞ¼regðþtÞ: (2)Ifthereisatransitionðs;rÞÀ !ðs0;r0Þin Untime(A)with2Æand2rÃforsome2Val;rÃ2RandsuccnðrÃÞ¼rthenthereistransitionðs;ÞÀ a !ðs0;0Þforsome02r0.Proof: FollowsfromDefinition13andLemma2.& Givenatimedwordð1;t1ÞÁÁÁðn;tnÞpathÁÁÁðsdefininga i i;iÞÀ!ðsi0þ1;i0þ1ÞÁÁÁthroughA,theprojec-tionofthiswordisdefinedtobethelabelofthecorre-spondingpathinUntime(A)givenbycombiningthepath-segmentsoftheformgiveninLemma5(1).ThefollowingtheoremstatesthatthesupervisorycontrolproblemfortimedautomatacanbesolvedusingtheautomatonUntime(A). Theorem5:LetbeacontrolfunctionforthetimedautomatonA,andletFbeasetofextendedstatesofAsuchthatifðs;Þ2Fand02regðÞthenðs;0Þ2F(orequivalently,À1ððFÞÞ¼FÞandlet:SÂRÂðÆ[fgÞ!f0;1gbeacontrolfunctionforthefinitestateautomatonUntime(A),withthe‘timepas-sage’eventclassedasuncontrollable.Definethecon-trolfunction:OÂÆ!f0;1gasðs;;Þ¼ðs;regðÞ;Þ.AssumethatthestatesðFÞareinacces-siblein(Untime(A),);thentheextendedstatesinFareinaccessibleinðA;Þ;furthermore,ifL(Un-time)(A),)ismaximalwiththisproperty,thensoisLtimed(A,). Proof:Supposethatanextendedstateðsn;nÞisac-cessibleinðA;Þ;thenthereisapath ðsð1;t1Þ ðn;tnÞ 0;0ÞÀ!ðs1;1ÞÁÁÁÀ!ðsn;nÞ throughAsatisfyingðsiÀ1;iÀ1þti;iÞ¼1foralli. ThusfrommultipleapplicationsofLemma5(1)thereisapath ðs0;0ÞÁÁÁðsiÀ1;regðiÀ1ÞÞÀ!ðsiÀ1;succðregðiÀ1ÞÞÞÀ!ÁÁÁÀ!ðsiÀ1;succniÀ1ðregðiiÀ1ÞÞÞÀ!ðsi;regðiÞÞÁÁÁðsn;regðnÞÞthroughUntime(A)forsuccniðregðiÞÞ¼regðiþtiþ1ÞwithðsiÀ1;regðiÀ1þtiÞ;iÞ¼1foralli.Thusðsn;regðnÞÞ¼ðsn;nÞisaccessiblein(Untime(A),)andthisprovesthefirstpartofthetheorem. NowassumethatthetimedlanguageLtimed(A,)isnotmaximalwiththisproperty:thatis,thatthereisacontrolfunctionÃsuchthatLtimedðA;ÃÞLtimedðA;Þ,thereisatimedwordð1;t1ÞÁÁÁðn;tnÞlyinginLtimedðA;ÃÞÀLtimedðA;ÞandtheextendedstatesinFarealsoinaccessibleinðA;ÃÞ.Let ðsð1;t1Þ ðn;tnÞ 0;0ÞÀ!ðs1;1ÞÁÁÁÀ!ðsn;nÞ bethepathinAdefinedbythetimedword ð1;t1ÞÁÁÁðn;tnÞstartingatðs0;0Þ.Foralli n,theredoesnotexistapathoveranywordinÆÃustartingatðsi;iÞandendingatanelementofF.Furthermore,foratleastonevalueofi Supervisorycontroloftimedautomata 1747 Untime(A)startingatðsÃ0;0ÞdoesnotlieinL(UntimeðAÞ;).Let:SÂRÂÆ[fg!f0;1gbethecontrolfunctionforUntime(A)definedasfollows.Ifastateðs;rÞisaccessibleinUntime(A),)thenÃðs;r0;Þ¼ðs;r0;Þforanytimesuccessorr0ofr,unlessðs;r0;Þ¼ðsi;reg;ðiþtiþ1Þ;iþ1Þforsomei OwingtothemaximalityconditiononL(Untime(A),),anelementofðFÞisaccessiblein(Untime(A),Ã).ThereforethereisapathpinUntime(A)fromðs0;0ÞtoanelementofðFÞwhichispermittedbyÃ,butnot,ofcourse,by.Thuspmustpassthroughatransition ðsiþ1 i;regðiþtiþ1ÞÞÀ!ðsiþ1;regðiþ1ÞÞ forsomei !ðs0;r0Þthroughwhichp0passes.Wewillshowthat2Æu[fgforallsuchedges.Assumethatnotthecaseandletðs;rÞÀ thisis !ðs0;r00Þbethelastedgeinpforwhich2Æc.ThedefinitionofÃimpliesthatðs;rÞisaccessiblein(Untime(A),),whichleadstoacontradictionsincetheendpointofp,whichliesinðFÞ,wouldbeaccessiblein(Untime(A),).Wecanliftp0toapathq,usingLemma5(2)repeatedly,startingatðsiþ1;iþ1Þandendingatanextendedstatef2À1ðFÞ¼F.ThepathqislegalinðA;ÃÞ,sinceallitseventslieinSu.However,theextendedstateðsiþ1;iþ1ÞisaccessibleinðA;ÃÞ;thustheforbiddenstatefisaccessibleinðA;ÃÞ,contrarytohypotheses.&Remark:FollowingTheorem5,whenthetimein-creasesstrictlymonotonically,theautomatonUntime(A)canbereplacedbythesimplifiedautoma-tonUntime(AÃ)thatissimilartoGÃwheretheeventhasbeenaddedtoitsalphabet. Example3:Considerasimpletimedautomatongiveninfigure2ainvolvingonlytwostates,onecontrollabletransitionandinitialstates.Assumethattheforbid-denstateisthestateðs0;x¼1Þ.Inordertosolvethecontrolproblem,theUntime(A)giveninfigure2b(-transitionsareshownaswell)isderivedandclearlyall transitionsleadingtothisstateshouldbedisabled.IftimeisstrictlypositivethesimplifiedautomatonUntimeðAÃÞ,giveninfigure2b,isderived.Thenclearlybothextendedstatesðs0;x¼1Þandðs0;1 isstrictlypositiveanditisnaturaltoexpectthatthecontrolledbehaviourshouldbecomemoreconserva-tive.Inotherwords,whenthetimeisnotallowedtobezero,theautomatonwouldnotbepermittedtovisitnon-closedstatesassociatedwithforbiddenclosedstates.Thisisduetothefactthat,whenthesimplifiedautomatonisused,ifnextðxÞ¼nextðyÞthen,whenðs;xÞisforbidden,ðs;yÞalsobecomesforbiddensincetherecanbenodifferencebetweenextendedstateswiththesamenext-value. Fromtheaboveitfollowsthatwhenthetimejumpisstrictlypositivethecontrolledbehaviourismoreconser-vative.Thefollowingcorollarygivesaconditionunderwhichthecontrolledbehaviouristheleastrestrictiveonederivedusingtheorem5. Corollary1:TheforbiddenstatecontrolproblemusingthesimplifieduntimingproceduregivestheleastrestrictivecontrolledbehaviourasstatedbyTheorem5undertheconditionthattheforbiddenstatesarenotclosedregions.InotherwordstheatomicpredicatesspecifyingtheforbiddenextendedstatesshouldbeoftheformxÃcforaclockx2CwhereÃisoneof ,<,!or>(butnot¼). 8. Conclusions GivenatimedautomatonG,wehavedefinedanewfinitestateautomatonGÃthatacceptsthesameuntimedlanguageasGandhassignificantlyfewerstatesthantheregionautomatonG0.GivenatimedBuechiautomaton,wehaveprovedasimilarresult. Next,thisresultisusedinconnectionwiththefor-biddenstatecontrolproblemfortimeddiscreteeventsystems.Westudythisproblemandshowthatthesim-plifieduntimingconstructionleadstoasimplifiedsuper-visorycontroldesignforrealtimediscrete-eventsystemsmodelledbytimedautomata.Conditionsunderwhichtheleastrestrictivesolutionisobtainedaregiven. Duetoitscomplexity,theuntimingprocedurefordensetimeautomataresultsinalargenumberofregionsfortheuntimedautomaton.Theefficiencyoftheinvolvedsupervisorydesigndependsonthenumberofregionsoftheuntimedautomaton.Therefore,simplifi-cationsandcomputationalapproximationsfortimedautomataareofimportance.Forthesimplifieduntimingprocedureaddressedhere,thenumberofregionsinthegraphstilldependexponentiallyonthenumberofclocks.Inpractice,asexplainedin}6,thereductionofregionsissignificant.InLaurenceandSpathopoulos(1998),thesimplifiedprocedurereducestheexponentialnumberofregions.However,itworksonlyforaspecialcasethatessentiallycorrespondstothecasewherethetimeisdiscretized.FurtherworkwithreferencetothenotionofurgencyintroducedinSpathopoulos(2003)willbereportedelsewhere. References Alur,R.,andDill,D.,1994,Atheoryoftimedautomata.TheoreticalComputerScience,126,183–235. Asarin,E.,Maler,O.,Pneuli,A.,andSifakis,J.,1998,Controllersynthesisfortimedautomata.ProceedingsoftheIFACSymposiumonSystemStructureandControl(Elsevier),pp.469–474. Brandin,B.A.,Wonham,W.M.,1994,Supervisorycontroloftimeddiscrete-eventsystems.IEEETransactionsonAutomaticControl,39,329–342. Hoffmann,G.,andWong-Toi,H.,1992,TheControlofDenseReal-timeDiscreteEventSystems,StanfordUniversityCSReport,No.STAN-CS-92-1411. Laurence,M.R.,andSpathopoulos,M.P.,1998,Forbiddenstateproblemsintimedautomata.Proceedingsofthe4thInternationalWorkshoponDiscrete-EventSystems(WODES98),Cagliari,Italy,August,pp.15–23. Ramadge,P.J.,andWonham,W.M.,1987,Supervisorycontrolofaclassofdiscreteeventprocesses,SIAMJournalofControlandOptimization,25,206–230. Spathopoulos,M.P.,2003,Onsupervisorycontrolfortimedautomatausingurgency.Proceedingsofthe9thIEEEInter-nationalConferenceonMethodsandMethodsinAutomationandRobotics,Miedzyzdroje,Poland,August,pp.863–869. 因篇幅问题不能全部显示,请点此查看更多更全内容