您的当前位置:首页生物化学名词解释汇总

生物化学名词解释汇总

2020-07-02 来源:乌哈旅游


(一)名词解释

1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极

离子。

2.必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食

中获得的氨基酸。

3. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI

表示。

4.稀有氨基酸:指存在于蛋白质中的20 种常见氨基酸以外的其它罕见氨基酸,它们是

正常氨基酸的衍生物。

5.非蛋白质氨基酸:指不存在于蛋白质分子中而以游离状态和结合状态存在于生物体

的各种组织和细胞的氨基酸。

6.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构

型的转变伴随着共价键的断裂和重新形成。

7.蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。

8.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的

空间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象

改变不会改变分子的光学活性。

9.蛋白质的二级结构:指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折

叠的方式。

10.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近

似球形的组装体。

11.蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定

的球状分子结构的构象。

12.氢键:指负电性很强的氧原子或氮原子与N-H 或O-H 的氢原子间的相互吸引力。

12

13.蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式

聚合所呈现的三维结构。

14.离子键:带相反电荷的基团之间的静电引力,也称为静电键或盐键。

15.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则的、

在空间上能辨认的二级结构组合体。

16.疏水键:非极性分子之间的一种弱的、非共价的相互作用。如蛋白质分子中的疏水

侧链避开水相而相互聚集而形成的作用力。

17.范德华力:中性原子之间通过瞬间静电相互作用产生的一种弱的分子间的力。当两

个原子之间的距离为它们的范德华半径之和时,范德华力最强。

18.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解度

降低并沉淀析出的现象称为盐析。

19.盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。

20.蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。

蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致

天然构象的破坏,但其一级结构不发生改变。

21.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复

生物活性的现象。

22.蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其所带电

荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作用。

23.凝胶电泳:以凝胶为介质,在电场作用下分离蛋白质或核酸等分子的分离纯化技术。

24.层析:按照在移动相(可以是气体或液体)和固定相(可以是液体或固体)之间的

分配比例将混合成分分开的技术。

(一)名词解释

1. 单核苷酸(mononucleotide):核苷与磷酸缩合生成的磷酸酯称为单核苷酸。

2. 磷酸二酯键(phosphodiester bonds):单核苷酸中,核苷的戊糖与磷酸的羟基之间形

成的磷酸酯键。

3. 不对称比率(dissymmetry ratio):不同生物的碱基组成由很大的差异,这可用不对

称比率(A+T)/(G+C)表示。

4. 碱基互补规律(complementary base pairing):在形成双螺旋结构的过程中,由于各种

碱基的大小与结构的不同,使得碱基之间的互补配对只能在G󰀀C(或C󰀀G)和A󰀀

T(或T󰀀A)之间进行,这种碱基配对的规律就称为碱基配对规律(互补规律)。

5. 反密码子(anticodon):在tRNA 链上有三个特定的碱基,组成一个密码子,由这些

反密码子按碱基配对原则识别mRNA 链上的密码子。反密码子与密码子的方向相

反。

6. 顺反子(cistron):基因功能的单位;一段染色体,它是一种多肽链的密码;一种结

构基因。

7. 核酸的变性、复性(denaturation、renaturation):当呈双螺旋结构的DNA 溶液缓慢

加热时,其中的氢键便断开,双链DNA 便脱解为单链,这叫做核酸的“溶解”或

变性。在适宜的温度下,分散开的两条DNA 链可以完全重新结合成和原来一样的

双股螺旋。这个DNA 螺旋的重组过程称为“复性”。

8. 退火(annealing):当将双股链呈分散状态的DNA 溶液缓慢冷却时,它们可以发生

不同程度的重新结合而形成双链螺旋结构,这现象称为“退火”。

9. 增色效应(hyper chromic effect):当DNA 从双螺旋结构变为单链的无规则卷曲状态

时,它在260nm 处的吸收便增加,这叫“增色效应”。

10. 减色效应(hypo chromic effect):DNA 在260nm 处的光密度比在DNA 分子中的各

个碱基在260nm 处吸收的光密度的总和小得多(约少35%~40%), 这现象称为“减

色效应”。

11. 噬菌体(phage):一种病毒,它可破坏细菌,并在其中繁殖。也叫细菌的病毒。

12. 发夹结构(hairpin structure):RNA 是单链线形分子,只有局部区域为双链结构。这

些结构是由于RNA 单链分子通过自身回折使得互补的碱基对相遇,形成氢键结合

而成的,称为发夹结构。

13. DNA 的熔解温度(Tm 值):引起DNA 发生“熔解”的温度变化范围只不过几度,

这个温度变化范围的中点称为熔解温度(Tm)。

14. 分子杂交(molecular hybridization):不同的DNA 片段之间,DNA 片段与RNA 片

28

段之间,如果彼此间的核苷酸排列顺序互补也可以复性,形成新的双螺旋结构。这

种按照互补碱基配对而使不完全互补的两条多核苷酸相互结合的过程称为分子杂

交。

15. 环化核苷酸(cyclic nucleotide):单核苷酸中的磷酸基分别与戊糖的3’-OH 及5’-OH

形成酯键,这种磷酸内酯的结构称为环化核苷酸。

1.米氏常数(Km 值):用Km 值表示,是酶的一个重要参数。Km 值是酶反应速度(V)

达到最大反应速度(Vmax)一半时底物的浓度(单位M 或mM)。米氏常数是酶的特

征常数,只与酶的性质有关,不受底物浓度和酶浓度的影响。

2.底物专一性:酶的专一性是指酶对底物及其催化反应的严格选择性。通常酶只能催

化一种化学反应或一类相似的反应,不同的酶具有不同程度的专一性,酶的专一性

可分为三种类型:绝对专一性、相对专一性、立体专一性。

3.辅基:酶的辅因子或结合蛋白质的非蛋白部分,与酶或蛋白质结合得非常紧密,用

透析法不能除去。

4.单体酶:只有一条多肽链的酶称为单体酶,它们不能解离为更小的单位。分子量为

13,000󰀀󰀀35,000。

5.寡聚酶:有几个或多个亚基组成的酶称为寡聚酶。寡聚酶中的亚基可以是相同的,

也可以是不同的。亚基间以非共价键结合,容易为酸碱,高浓度的盐或其它的变性

43

剂分离。寡聚酶的分子量从35 000 到几百万。

6.多酶体系:由几个酶彼此嵌合形成的复合体称为多酶体系。多酶复合体有利于细胞

中一系列反应的连续进行,以提高酶的催化效率,同时便于机体对酶的调控。多酶

复合体的分子量都在几百万以上。

7.激活剂:凡是能提高酶活性的物质,都称激活剂,其中大部分是离子或简单的有机

化合物。

8.抑制剂:能使酶的必需基团或酶活性部位中的基团的化学性质改变而降低酶的催化

活性甚至使酶的催化活性完全丧失的物质。

9.变构酶:或称别构酶,是代谢过程中的关键酶,它的催化活性受其三维结构中的构

象变化的调节。

10.同工酶:是指有机体内能够催化同一种化学反应,但其酶蛋白本身的分子结构组成

却有所不同的一组酶。

11.诱导酶:是指当细胞中加入特定诱导物后诱导产生的酶,它的含量在诱导物存在下

显著增高,这种诱导物往往是该酶底物的类似物或底物本身。

12.酶原:酶的无活性前体,通常在有限度的蛋白质水解作用后,转变为具有活性的酶。

13.酶的比活力:比活力是指每毫克蛋白质所具有的活力单位数,可以用下式表示:

活力单位数

比活力= 蛋白质量(mg)

14.活性中心:酶分子中直接与底物结合,并催化底物发生化学反应的部位,称为酶

活性中心。

(一)名词解释

1. 生物氧化: 生物体内有机物质氧化而产生大量能量的过程称为生物氧化。生物氧

化在细胞内进行,氧化过程消耗氧放出二氧化碳和水,所以有时也称之为“细胞呼

吸”或“细胞氧化”。生物氧化包括:有机碳氧化变成CO2;底物氧化脱氢、氢及

电子通过呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2 和H2O

的同时,释放的能量使ADP 转变成ATP。

60

2. 呼吸链:有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排列顺

序的传递体组成的传递体系进行传递,最终与氧结合生成水,这样的电子或氢原子

的传递体系称为呼吸链或电子传递链。电子在逐步的传递过程中释放出能量被用于

合成ATP,以作为生物体的能量来源。

3. 氧化磷酸化:在底物脱氢被氧化时,电子或氢原子在呼吸链上的传递过程中伴随

ADP 磷酸化生成ATP 的作用,称为氧化磷酸化。氧化磷酸化是生物体内的糖、脂

肪、蛋白质氧化分解合成ATP 的主要方式。

4. 磷氧比:电子经过呼吸链的传递作用最终与氧结合生成水,在此过程中所释放的能

量用于ADP 磷酸化生成ATP。经此过程消耗一个原子的氧所要消耗的无机磷酸的

分子数(也是生成ATP 的分子数)称为磷氧比值(P/O)。如NADH 的磷氧比值

是3,FADH2 的磷氧比值是2。

5. 底物水平磷酸化:在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷

酸键(或高能硫酯键),由此高能键提供能量使ADP(或GDP)磷酸化生成ATP(或

GTP)的过程称为底物水平磷酸化。此过程与呼吸链的作用无关,以底物水平磷酸

化方式只产生少量ATP。

如在糖酵解(EMP)的过程中,3-磷酸甘油醛脱氢后产生的1,3-二磷酸甘油酸,在

磷酸甘油激酶催化下形成ATP 的反应,以及在2-磷酸甘油酸脱水后产生的磷酸烯

醇式丙酮酸,在丙酮酸激酶催化形成ATP 的反应均属底物水平的磷酸化反应。另外,

在三羧酸环(TCA)中,也有一步反应属底物水平磷酸化反应,如α-酮戊二酸经

氧化脱羧后生成高能化合物琥珀酰~CoA,其高能硫酯键在琥珀酰CoA 合成酶的催

化下转移给GDP 生成GTP。然后在核苷二磷酸激酶作用下,GTP 又将末端的高能

磷酸根转给ADP 生成ATP。

6.能荷:能荷是细胞中高能磷酸状态的一种数量上的衡量,能荷大小可以说明生物体

中ATP-ADP-AMP 系统的能量状态。

能荷=

[ATP]+

1

2 [ADP]

[ATP]+[ADP]+[AMP]

(一)名词解释:

1.糖异生:非糖物质(如丙酮酸乳酸甘油生糖氨基酸等)转变为葡萄糖的过程。

2.Q 酶:Q 酶是参与支链淀粉合成的酶。功能是在直链淀粉分子上催化合成(α-1, 6)

糖苷键,形成支链淀粉。

3.乳酸循环乳:酸循环是指肌肉缺氧时产生大量乳酸,大部分经血液运到肝脏,通过

糖异生作用肝糖原或葡萄糖补充血糖,血糖可再被肌肉利用,这样形成的循环称乳

酸循环。

4.发酵:厌氧有机体把糖酵解生成NADH 中的氢交给丙酮酸脱羧后的产物乙醛,使之

生成乙醇的过程称之为酒精发酵。如果将氢交给病酮酸丙生成乳酸则叫乳酸发酵。

5.变构调节:变构调节是指某些调节物能与酶的调节部位结合使酶分子的构象发生改

变,从而改变酶的活性,称酶的变构调节。

6.糖酵解途径:糖酵解途径指糖原或葡萄糖分子分解至生成丙酮酸的阶段,是体内糖

代谢最主要途径。

7.糖的有氧氧化:糖的有氧氧化指葡萄糖或糖原在有氧条件下氧化成水和二氧化碳的

过程。是糖氧化的主要方式。

8.肝糖原分解:肝糖原分解指肝糖原分解为葡萄糖的过程。

9.磷酸戊糖途径:磷酸戊糖途径指机体某些组织(如肝、脂肪组织等)以6-磷酸葡萄

糖为起始物在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸进而代谢生成磷酸

戊糖为中间代谢物的过程,又称为磷酸已糖旁路。

10.D-酶:一种糖苷转移酶,作用于α-1,4 糖苷键,将一个麦芽多糖的片段转移到葡

萄糖、麦芽糖或其它多糖上。

11.糖核苷酸:单糖与核苷酸通过磷酸酯键结合的化合物,是双糖和多糖合成中单糖的

活化形式与供体。

(一、)名词解释:

1.必需脂肪酸:为人体生长所必需但有不能自身合成,必须从事物中摄取的脂肪酸。

在脂肪中有三种脂肪酸是人体所必需的,即亚油酸,亚麻酸,花生四烯酸。

2.α-氧化:α-氧化作用是以具有3-18碳原子的游离脂肪酸作为底物,有分子氧间接

参与,经脂肪酸过氧化物酶催化作用,由α碳原子开始氧化,氧化产物是D-α-羟

脂肪酸或少一个碳原子的脂肪酸。

88

3. 脂肪酸的β-氧化:脂肪酸的β-氧化作用是脂肪酸在一系列酶的作用下,在α碳原

子和β碳原子之间断裂,β碳原子氧化成羧基生成含2个碳原子的乙酰CoA 和比原

来少2 个碳原子的脂肪酸。

4. 脂肪酸ω-氧化:ω-氧化是C5、C6、C10、C12脂肪酸在远离羧基的烷基末端碳原子

被氧化成羟基,再进一步氧化而成为羧基,生成α,ω-二羧酸的过程。

5. 乙醛酸循环:一种被修改的柠檬酸循环,在其异柠檬酸和苹果酸之间反应顺序有改

变,以及乙酸是用作能量和中间物的一个来源。某些植物和微生物体内有此循环,

他需要二分子乙酰辅酶A的参与;并导致一分子琥珀酸的合成。

6. 柠檬酸穿梭:就是线粒体内的乙酰CoA 与草酰乙酸缩合成柠檬酸,然后经内膜上的

三羧酸载体运至胞液中,在柠檬酸裂解酶催化下,需消耗ATP 将柠檬酸裂解回草酰

乙酸和,后者就可用于脂肪酸合成,而草酰乙酸经还原后再氧化脱羧成丙酮酸,丙

酮酸经内膜载体运回线粒体,在丙酮酸羧化酶作用下重新生成草酰乙酸,这样就可

又一次参与转运乙酰CoA 的循环。

7.乙酰CoA 羧化酶系:大肠杆菌乙酰CoA 羧化酶含生物素羧化酶、生物素羧基载体蛋

白(BCCP)和转羧基酶三种组份,它们共同作用催化乙酰CoA 的羧化反应,生成

丙二酸单酰-CoA。

8.脂肪酸合酶系统:脂肪酸合酶系统包括酰基载体蛋白(ACP)和6 种酶,它们分别

是:乙酰转酰酶;丙二酸单酰转酰酶;β-酮脂酰ACP 合成酶;β-酮脂酰ACP 还

原酶;β-羟;脂酰ACP 脱水酶;烯脂酰ACP 还原酶。

(一)名词解释

1.蛋白酶:以称肽链内切酶(Endopeptidase),作用于多肽链内部的肽键,生成较原来

含氨基酸数少的肽段,不同来源的蛋白酶水解专一性不同。

2.肽酶:只作用于多肽链的末端,根据专一性不同,可在多肽的N-端或C-端水解下氨

基酸,如氨肽酶、羧肽酶、二肽酶等。

3.氮平衡:正常人摄入的氮与排出氮达到平衡时的状态,反应正常人的蛋白质代谢情

况。

4.生物固氮:利用微生物中固氮酶的作用,在常温常压条件下将大气中的氮还原为氨

的过程(N2 + 3H2→ 2 NH3)。

5.硝酸还原作用:在硝酸还原酶和亚硝酸还原酶的催化下,将硝态氮转变成氨态氮的

过程,植物体内硝酸还原作用主要在叶和根进行。

6.氨的同化:由生物固氮和硝酸还原作用产生的氨,进入生物体后被转变为含氮有机

化合物的过程。

7.转氨作用:在转氨酶的作用下,把一种氨基酸上的氨基转移到α-酮酸上,形成另一

种氨基酸。

8.尿素循环:尿素循环也称鸟氨酸循环,是将含氮化合物分解产生的氨转变成尿素的

过程,有解除氨毒害的作用。

9.生糖氨基酸:在分解过程中能转变成丙酮酸、α-酮戊二酸乙、琥珀酰辅酶A、延胡

索酸和草酰乙酸的氨基酸称为生糖氨基酸。

10.生酮氨基酸:在分解过程中能转变成乙酰辅酶A 和乙酰乙酰辅酶A 的氨基酸称为

生酮氨基酸。

11.核酸酶:作用于核酸分子中的磷酸二酯键的酶,分解产物为寡核苷酸或核苷酸,根

据作用位置不同可分为核酸外切酶和核酸内切酶。

12.限制性核酸内切酶:能作用于核酸分子内部,并对某些碱基顺序有专一性的核酸内

99

切酶,是基因工程中的重要工具酶。

13.氨基蝶呤:对嘌呤核苷酸的生物合成起竞争性抑制作用的化合物,与四氢叶酸结构

相似,又称氨基叶酸。

14.一碳单位:仅含一个碳原子的基团如甲基(CH3-、亚甲基(CH2=)、次甲基(CH

≡)、甲酰基(O=CH-)、亚氨甲基(HN=CH-)等,一碳单位可来源于甘氨酸、苏

氨酸、丝氨酸、组氨酸等氨基酸,一碳单位的载体主要是四氢叶酸,功能是参与生

物分子的修饰。

(一)名词解释

1.半保留复制:双链DNA 的复制方式,其中亲代链分离,每一子代DNA 分子由一条

亲代链和一条新合成的链组成。

2.不对称转录:转录通常只在DNA 的任一条链上进行,这称为不对称转录。

3.逆转录:Temin 和Baltimore 各自发现在RNA 肿瘤病毒中含有RNA 指导的DNA 聚

合酶,才证明发生逆向转录,即以RNA 为模板合成DNA。

4.冈崎片段:一组短的DNA 片段,是在DNA 复制的起始阶段产生的,随后又被连接

酶连接形成较长的片段。在大肠杆菌生长期间,将细胞短时间地暴露在氚标记的胸

腺嘧啶中,就可证明冈崎片段的存在。冈崎片段的发现为DNA 复制的科恩伯格机理

提供了依据。

5.复制叉:复制DNA 分子的Y 形区域。在此区域发生链的分离及新链的合成。

6.领头链:DNA 的双股链是反向平行的,一条链是5/→3/方向,另一条是3/→5/方向,

上述的起点处合成的领头链,沿着亲代DNA 单链的3/→5/方向(亦即新合成的DNA

沿5/→3/方向)不断延长。所以领头链是连续的。

7.随后链:已知的DNA 聚合酶不能催化DNA 链朝3/→5/方向延长,在两条亲代链起

点的3/ 端一侧的DNA 链复制是不连续的,而分为多个片段,每段是朝5/→3/方向进

行,所以随后链是不连续的。

8.有意义链:即华森链,华森󰀀󰀀克里格型DNA 中,在体内被转录的那股DNA 链。

简写为Wstrand。

117

9.光复活:将受紫外线照射而引起损伤的细菌用可见光照射,大部分损伤细胞可以恢

复,这种可见光引起的修复过程就是光复活作用。

10.重组修复:这个过程是先进行复制,再进行修复,复制时,子代DNA 链损伤的对

应部位出现缺口,这可通过分子重组从完整的母链上,将一段相应的多核苷酸片段

移至子链的缺口处,然后再合成一段多核昔酸键来填补母链的缺口,这个过程称为

重组修复。

11.内含子:真核生物的mRNA 前体中,除了贮存遗传序列外,还存在非编码序列,

称为内含子。

12.外显子:真核生物的mRNA 前体中,编码序列称为外显子。

13.基因载体:外源DNA 片段(目的基因)要进入受体细胞,必须有一个适当的运载

工具将带入细胞内,并载着外源DNA 一起进行复制与表达,这种运载工具称为载

体。

14.质粒:是一种在细菌染色体以外的遗传单元,一般由环形双链DNA 构成,其大小

从1󰀀200Kb。

(一) 名词解释

1.密码子(codon):存在于信使RNA 中的三个相邻的核苷酸顺序,是蛋白质合成中某

一特定氨基酸的密码单位。密码子确定哪一种氨基酸叁入蛋白质多肽链的特定位置

上;共有64 个密码子,其中61 个是氨基酸的密码,3 个是作为终止密码子。

2.同义密码子(synonym codon):为同一种氨基酸编码的几个密码子之一,例如密码

子UUU 和UUC 二者都为苯丙氨酸编码。

3.反密码子(anticodon):在转移RNA 反密码子环中的三个核苷酸的序列,在蛋白质

合成中通过互补的碱基配对,这部分结合到信使RNA 的特殊密码上。

4.变偶假说(Wobble hypothesis):克里克为解释tRNA 分子如何去识别不止一个密码

子而提出的一种假说。据此假说,反密码子的前两个碱基(3ˊ端)按照碱基配对的

一般规律与密码子的前两个(5ˊ端)碱基配对,然而tRNA 反密码子中的第三个碱

基,在与密码子上3ˊ端的碱基形成氢键时,则可有某种程度的变动,使其有可能

与几种不同的碱基配对。

5.移码突变(frame-shift mutation):一种突变,其结果为导致核酸的核苷酸顺序之间的

132

正常关系发生改变。移码突变是由删去或插入一个核苷酸的点突变构成的,在这种

情况下,突变点以前的密码子并不改变,并将决定正确的氨基酸顺序;但突变点以

后的所有密码子都将改变。且将决定错误的氨基酸顺序。

6.氨基酸同功受体(isoacceptor):每一个氨基酸可以有多过一个tRNA 作为运载工具,

这些tRNA 称为该氨基酸同功受体。

7.反义RNA(antisense RNA):具有互补序列的RNA。反义RNA 可以通过互补序列

与特定的mRNA 相结合,结合位置包括mRNA 结合核糖体的序列(SD 序列)和起

始密码子AUG,从而抑制mRNA 的翻译。又称干扰mRNA 的互补RNA。

8. 信号肽(signal peptide): 信号肽假说认为,编码分泌蛋白的mRNA在翻译时首先合

成的是N 末端带有疏水氨基酸残基的信号肽,它被内质网膜上的受体识别并与之相

结合。信号肽经由膜中蛋白质形成的孔道到达内质网内腔,随即被位于腔表面的信

号肽酶水解,由于它的引导,新生的多肽就能够通过内质网膜进入腔内,最终被分

泌到胞外。翻译结束后,核糖体亚基解聚、孔道消失,内质网膜又恢复原先的脂双

层结构。

9. 简并密码(degenerate codon):或称同义密码子(synonym codon),为同一种氨基

酸编码几个密码子之一,例如密码子UUU 和UUC 二者都为苯丙氨酸编码。

10.核糖体(ribosome): 核糖体是很多亚细胞核蛋白颗粒中的一个,由大约等量的RNA

和蛋白质所组成,是细胞内蛋白质合成的场所。每个核糖核蛋白体在外形上近似圆

形,直径约为20nm。由两个不相同的亚基组成,这两个亚基通过镁离子和其它非

共价键地结合在一起。已证实有四类核糖核蛋白体(细菌、植物、动物和线粒体)

它们以其单体的、亚单位的和核糖核蛋白体RNA 的沉降系数相区别。细菌核蛋白

体含有约50 个不同的蛋白质分子和3 个不同的RNA 分子。小的亚单位含有约20

个蛋白质分子和1 个RNA分子。大的亚单位含有约30 个蛋白质分子和2 个RNA 分

子。核蛋白体有两个结合转移RNA 的部位(部位和部位),并且也能附上信使RNA,

简写为Rb。

11.多核糖体(polysome):在信使核糖核酸链上附着两个或更多的核糖体。

12.氨酰基部位(aminoacyl site):在蛋白质合成过程中进入的氨酰-tRNA结合在核蛋白

体上的部位。

13.肽酰基部位(peptidy site):指在蛋白质合成过程中,当下一个氨酰基转移RNA接到

核糖核蛋白体的氨基部位时,肽酰tRNA所在核蛋白体上的结合点。

14.肽基转移酶(peptidyl transferase):蛋白质合成中的一种酶。它能催化正在增长的

多肽链与下一个氨基酸之间形成肽键。在细菌中此酶是50S 核糖核蛋白体亚单位中

的蛋白质之一。

15.氨酰-tRNA 合成酶(amino acy-tRNA synthetase):催化氨基酸激活的偶联反应的酶,

先是一种氨基酸连接到AMP 生成一种氨酰腺苷酸,然后连接到转移RNA 分子生成

133

氨酰-tRNA 分子。

16.蛋白质折叠(protein folding):蛋白质的三维构象,称为蛋白质的折叠。是由蛋白

质多肽链的氨基酸顺序所决定的。不同的蛋白质有不同的氨基酸顺序,也就各自按

照一定的方式折叠而成该蛋白质独有的天然构象。这个蛋白质折叠是在自然条件下

自发进行的,在生物体内条件下,它是在热力学上最稳定的形式。多肽链在核糖体

上一面延长,一面自发地折叠成其本身独有的构象。当肽链终止延长并从核糖体上

脱落时,它也就折叠成天然的三维结构。

17.核蛋白体循环(polyribosome):是指已活化的氨基酸由tRNA转运到核蛋白体合成

多肽链的过程。

18.锌指(zine finger):是调控转录的蛋白质因子中与DNA 结合的一种基元,它由大

约30 个氨基酸残基的肽段与锌螯合形成的指形结构,锌以4 个配位键与肽链的Cys

或His 残基结合,指形突起的肽段含12-13 个氨基酸残基,指形突起嵌入DNA 的

大沟中,由指形突起或其附近的某些氨基酸侧链与DNA 的碱基结合而实现蛋白质

与DNA 的结合。

19.亮氨酸拉链(leucine zipper):这是真核生物转录调控蛋白与蛋白质及与DNA 结合

的基元之一。两个蛋白质分子近处C 端肽段各自形成两性α-螺旋,α-螺旋的肽

段每隔7 个氨基酸残基出现一个亮氨酸残基,两个α-螺旋的疏水面互相靠拢,两

排亮氨酸残基疏水侧链排列成拉链状形成疏水键使蛋白质结合成二聚体,α-螺旋

的上游富含碱性氨基酸(Arg 、Lys)肽段借Arg 、Lys 侧链基团与DNA 的碱基

互相结合而实现蛋白质与DNA 的特异结合。

20.顺式作用元件(cis-acting element):真核生物DNA 的转录启动子和增强子等序列,

合称顺式作用元件。

21.反式作用因子(trans-acting factor):调控转录的各种蛋白质因子总称反式作用因子。

22.螺旋󰀀环󰀀螺旋(helix-loop-helix):这种蛋白质基元由两个两性α󰀀螺旋通过一个

肽段连结形成螺旋󰀀环󰀀螺旋结构,两个蛋白质通过两性螺旋的疏水面互相结合,

与DNA 的结合则依靠此基元附近的碱性氨基酸侧链基团与DNA 的碱基结合而实

现。

因篇幅问题不能全部显示,请点此查看更多更全内容