2、经过任意三点中的两点共可以画出的直线条数是( ) A.1条 B.2条 C. 3条 D.1条或3条
3、如,直线a,b相交于点O,若∠1等于40°,则∠2等于( ) A. 50° B. 6 0° C. 140° D. 160°
4、如,钟表8时30分时,时针与分针所成的角的度数为( ) A. 90° B.75° C. 60° D. 30°
5、将两块直角三角板的直角顶点重合,如所示,若 , 则∠BOC的度数是( ).
A. 45° B.52° C. 60° D. 50° 6、如的几何体,左视是 ( )。 二、细心填一填(每小题4分,共24分)
7、如,经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是
8、如,点M是AB的中点,已知线段BM= 5cm,则线段AB的长度为 cm. 9、把一张正方形纸条按中那样折叠后,若得到∠AOB/=700,则∠B/OG=______.
10、已知线段AB=6cm,在直线AB上画线段AC=2cm,则BC的长是_________cm.
11、已知 与 互余,且 ,则 为 .
12、观察下列各正方形案,每条边上有 个圆点,每个案中圆点的总数是 .
按此规律推断出 与 的关系式为是 。 三、耐心解一 解(每 小题8分,共32分)
13、A、B是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在中表示出抽水站点P的位置,并说明你的理由:
14、如,∠AOD=∠BOC=90°,∠COD=42°,求∠AOC、∠AOB的度数 15、如,D是AB的中点, E是BC的中点,BE= AC=2cm, 求线段DE的长 16、如,O为直线AB上一点,∠AOC=50°,OD平分∠AO C,∠DOE=90° (1)请你数一数,中有多少个小于平角的角; (2)求出∠BOD的度数;
(3)请通过计算说明OE是否平分∠BOC. 四、专心做一 做(每小题10分,共20分)
17、下面是小马解的一道题:在同一平面上,若∠BOA=70°,∠BOC=15°,求∠AOC的度数.
解:根据题意可画出形
∠AOC=∠BOA-∠BOC=70°-15°=55°
若你是老师,会判小马满分吗?若会,说明理由.若 不会,请将小马的错误指出,并给出你认为正确的解法.
18、下面是由同一型号的黑白两种颜色的等边三角形瓷砖按一定规律铺设的形。
仔细观察形可知:
1中有1块黑色的瓷砖,可表示为1= ; 2中有3块黑色的瓷砖,可表示为1+2= ; 3中有6块黑色的瓷砖,可表示为1+2+3= ; 实践与探索:
(1)请在4中的虚线框内画出第4个形
(2)第10个形有 块黑色的瓷砖;第n个形有 块黑色的瓷砖.
七年级数学部分寒假作业答案: 一、精心选一选(每小题4分,共24分) 1、B 2、D 3、C 4、B 5、B 6、B 二、细心填一填(每小题4分,共24分) 7、两点确定一条直线 8、10 9、55° 10、4或8 11、50° 12、 4n -4
三、耐心解一解(每小题8分,共32分) 13、略 (理由:两点之间线段最短) 14、∠AOC=132° ∠AOB=138° 15、∵ ∴ ∵ 是 的中点 ∴ ∴
∵ 是 的中点 ∴ ∴ =3+2=5
16、(1)中有9个小于平角的角;
(2)155°(提示:因为OD平分∠AOC,∠AOC =50°,所以∠AOD = =25°,所以∠BOD=180°-25°=155°)
(3)因为 ∠BOE =180°-∠DOE-∠AOD=180°-90°-25°=65°,∠COE = 90°-25°=65 ,所以 ∠BOE =∠COE,即OE平分∠BOE.
四、专心做一做(每小题10分,共20分)
17、解:小马虎不会得满分的.小马 考虑的问题不全面,除了上述问题∠BOC在∠BOA内部以外,还有另一种情况∠BOC在∠BOA的外部.解法如下:根据题意可画出形
∴∠AOC=∠BOA+∠BOC =70°+15°=85° 综合以上两种情况,∠AOC=55°或85°. 18、解:(1)略,(2)55, n(n+1),(n为正整数)
因篇幅问题不能全部显示,请点此查看更多更全内容