您的当前位置:首页初中毕业生学业考试数学试题(含答案)(

初中毕业生学业考试数学试题(含答案)(

2024-04-16 来源:乌哈旅游


九年级生学业考试

数学试卷

说明:全卷共8页,考试时间90分钟,满分120分. 题号 得分 一 二 三 16 17 18 19 20 21 22 23 24 25 总分 一、选择题:每小题3分,共15分;每小题给出四个答案,其中有一个是正确的,把所选答案的编号填写在题目后面的括号内. 1.1等于( ) 2

B.2

C.A.2

1 2 D.

1 22.小明在镜中看到身后墙上的时钟,实际时间最接近8时的是下图中的( )

A. B. C. D.

3.我市大部分地区今年5月中、下旬的天气情况是:前5天小雨,后5天暴雨.那么能反映我市主要河流水位变化情况的图象大致是( ) 水位 水位 水位 水位 (天) (天) (天) (天) 0 0 0 0 5 10 5 10 5 10 5 10 D. A. B. C. 4.如图1,把矩形ABCD沿EF对折,若150,则AEF等于( ) A.115 C.120

5.在同一平面直角坐标系中,直线yx3与双曲线y

B.130 D.65

A B

E D 1 F

图1

C

1的交点个数为( ) xA.0个 B.1个 C.2个 D.无法确定 二、填空题:每小题3分,共30分;答案填写在该题的横线上.

6.我市约有495万人口,用科学记数法表示为 人.

第1页 共10页

7.如果一个几何体的主视图是等腰三角形,那么这个几何体可以是 .(填上满足条件的一个几何体即可)

8.一个袋中装有6个红球、4个黑球、2个白球,每个球除颜色外完全相同,从袋中任意摸出一个球,那么摸出 球的可能性最大. 9.计算:23222 .

10.计算:(abab)(ab) .

11.将抛物y(x1)向左平移1个单位后,得到的抛物线的解析式是 .

2x22x312.当x 时,分式的值为零.

x313.能使平行四边形ABCD为正方形的条件是 .(填上一个符合题目要求的条件即可)

B 14.如图2,两个半圆中,小圆的圆心O在大O的直径CD上, A 长为4的弦AB与直径CD平行且与小半圆相切,那么圆中阴影部

C 分面积等于 .

15.如图3,已知△ABC的周长为m,分别连接AB,BC,CA 的中点A1,B1,C1得△A1B1C1,再连接A1B1,B1C1,C1A1的中点

O O图2

A D A2,B2,C2得△A2B2C2,再连接A2B2,B2C2,C2A2的中点

A1 C2 A2 A B1 3C3 B3C1 C

B2 A3,B3,C3得△A3B3C3,这样延续下去,最后得△AnBnCn. B 图3 , △AnBnCn

设△A1B1C1的周长为l1,△A2B2C2的周长为l2,△A3B3C3的周长为l3的周长为ln,则ln . 三、解答题:本大题有10小题,共75分. 16.本小题满分6分. 因式分解:

第2页 共10页

17.本小题满分6分. 解不等式组:53(x4)2,

2x3≥1.

18.本小题满分6分.

如图4是某文具店在卖出供学生使用的甲、乙、丙三种品牌科学计算器个数的条形统计图,试解答下面问题:

(1)求卖出甲、乙、丙三种科学计算器的个数的频率;

(2)根据以上统计结果,请你为该文具店进货提出一条合理化建议.

个数 90 90 72 54 54 36 36

18 0 品牌

甲 乙 丙

19.本小题满分6分.

图4

,1),B(4,3),C(4,1).如图5,已知△ABC的顶点A ,B,C的坐标分别是A(1(1)作出△ABC关于原点O中心对称的图形;

(2)将△ABC绕原点O按顺时针方向旋转90后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.

第3页 共10页

y C B A O x 图5

20.本小题满分7分.

小明与小华在玩一个掷飞镖游戏,如图6甲是一个把两个同心圆平均分成8份的靶,当飞镖掷中阴影部分时,小明胜,否则小华胜(没有掷中靶或掷到边界线时重掷). (1)不考虑其他因素,你认为这个游戏公平吗?说明理由.

(2)请你在图6乙中,设计一个不同于图6甲的方案,使游戏双方公平.

图6乙 图6 甲

21.本小题满分7分.

梅华中学九年级数学课外学习小组某下午实践活动课时,测量朝西教学楼前的旗杆AB的高度.如图7,当阳光从正西方向照射过来时,旗杆AB的顶端A的影子落在教学楼前的坪地

,DE4m,BD20m,DE与地面的夹角30.在同一时C处,测得影长CE2m刻,测得一根长为1m的直立竹竿的影长恰为4m.根据这些数据求旗杆AB的高度.(可能用到的数据:

第4页 共10页

,结果保留两个有效数字)

A B D 图7

E C

22.本小题满分8分.

某公司开发生产的1200件新产品需要精加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品.公司派出相关人员分别到这两间工厂了解生产情况,获得如下信息: 信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天比甲工厂多加工20件.

根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?

23.本小题满分8分.

用两个全等的正方形ABCD和CDFE拼成一个矩形ABEF,把一个足够大的直角三角尺的直角顶点与这个矩形的边AF的中点D重合,且将直角三角尺绕点D按逆时针方向旋转. (1)当直角三角尺的两直角边分别与矩形ABEF的两边BE,EF相交于点G,H时,如图8甲,通过观察或测量BG与EH的长度,你能得到什么结论?并证明你的结论. (2)当直角三角尺的两直角边分别与BE的延长线,EF的延长线相交于点G,H时(如,你在图8甲中得到的结论还成立吗?简要说明理由. 8图乙)

H A B

D F H A B

D F E

G

G C 图8甲

E C

图8乙

第5页 共10页

24.本小题满分10分. 如图9,直线l的解析式为y4x4,l与x轴,y轴分别交于点A,B. 3(1)求原点O到直线l的距离; (2)有一个半径为1的

以每秒1个单位长的速度沿y轴正方向运动,C从坐标原点出发,

设运动时间为t(秒).当

25.本小题满分11分.

C与直线l相切时,求t的值.

y l B x A C O 图9

12x上,过点A作与x轴平行的直线交抛物线于点B,延长41连接AD设点A的横坐标为m,AO,BO分别与抛物线yx2相交于点C,D,,BC,

8且m0.

(1)当m1时,求点A,B,D的坐标;

(2)当m为何值时,四边形ABCD的两条对角线互相垂直; (3)猜想线段AB与CD之间的数量关系,并证明你的结论.

如图10,点A在抛物线y

第6页 共10页

y B O C 图10

D A x

广东省梅州市初中毕业生学业考试

数学试卷参考答案及评分意见

一、选择题:每小题3分,共15分 1.D 2.B 3.B 二、填空题:每小题3分,共30分

64.A 5.C

6.4.9510; 7.圆锥或正三棱锥或正四棱锥;

28.红; 9.3 10.b1;

11.yx; 12.x1; 13.ACBD且AC⊥BD或ABBC且AB⊥BC等;

14.2;

115.m.

222n三、解答下列各题:共75分

16.解:原式(y1)(x2x1) ·································································· 2分 (y1)(x1) ········································································· 4分 (y1)(y1)(x1) ·································································· 6分 17.解:由53(x4)2,得x5, ····························································· 2分 由2x3≥1,得x≥2, ··································································· 4分 原不等式组的解集是:2≤x5. ···················································· 6分 18.解:(1)卖出甲计算器个数的频率: 卖出乙计算器个数的频率:

·································· 2分

222540.3 ··································· 3分

365490900.5. · 卖出丙计算器个数的频率:······························· 4分

365490 (2)0.2:0.3:0.52:3:5, ··································································· 5分 该文具店进甲、乙、丙三种科学计算器时,按2:3:5的比例进货. ··········· 6分

(或该文具店进货时,丙科学计算器进多一些,而甲、乙科学计算器进少一些.类

y 似这样的合理答案5分)

19.(1)正确画出图形 ······························································· 3分 B1 C1 B2 (2)正确画出图形 ······························································· 5分

A1 A2 C2 x , · A1(11)··········································································· 6分 C A O 20.解:(1)这个游戏公平. ······················································ 2分 B 根据图6甲的对称性,阴影部分的面积等于圆面积的一半, 这个游戏公平. ···················································································· 4分 (2)把图6乙中的同心圆平均分成偶数等分,再把其中的一半作为阴影部分即可.(图略) ············································································································· 7分

第7页 共10页

21.解:如图,过点C,E分别作CF⊥AB于点F,EH⊥BD的延长线于H. ······ 1分 在Rt△DEH中,

A DE4m,EDH30,

E C D H EH2m, ························································· 2分

F ···································· 3分 B DHDEEH23m · 又

22AF1·························································································· 5分  ·

CF411 AFCF(EFCE)

441 (BDDHCE)6.4. ··························································· 6分

4 ABEHAF8.4(m). ···································································· 7分 22.解:设甲工厂每天能加工x件新产品, ························································· 1分 则乙工厂每天能加工(x20)件新产品. ······················································· 2分 依题意得方程

. ··························································· 4分

解得x40或x60(不合题意舍去), ····················································· 6分 经检验x40是所列方程的解, x2060. ······················································································· 7分 答:甲工厂每天能加工40件新产品,乙工厂每天能加工60件新产品. ··············· 8分 23.解:(1)BGEH. ··············································································· 2分 四边形ABCD和CDFE都是正方形,

DCDF,DCGDFHFDC90,

CDGCDHCDHFDH90,CDGFDH, ··············· 3分

△CDG≌△FDH,

CGFH, ························································································ 4分 BCEF,······································································ 5分 BGEH. ·(2)结论BGEH仍然成立. ······································································· 6分 同理可证△CDG≌△FDH,

BGEH.· CGFH,BCEF,····················································· 8分

y 424.解:(1)在yx4中,令x0,得y4,得BO4.

3l C D 令y0,得x3,得AO3,

B AB············································ 2分 AOBO5. ·

D C A 第8页 共10页

22 设点O到直线AB的距离为h,

O x

h,

AOBO············································································ 4分 2.4. ·

AB (其它解法参照给分)

(2)如图,设C与直线l相切于点D,连CD,则CD⊥AB, ··························· 5分

AO⊥BO,BDCBOA90,

ABOCBD

BCCD ······························································ 6分 ,ABAO 由(1)得AO3,BO4,AB5,

BC1557,BC,OC4, 533337 tCO(秒). ··············································································· 8分

35 根据对称性得BCBC,

351717tOC(秒) OC4,. ················································· 9分

333717 当C与直线l相切时,t秒或秒. ·············································· 10分

33 △ABO∽△CBD,25.解:(1)

点A在抛物线y121x上,且xm1,A1··················· 1分 ,, ·

4414

点B与点A关于y轴对称,B1··············································· 2分 ,. ·

设直线BD的解析式为ykx,

y k,141x. ··········································································· 3分 41······················································ 4分 . ·2 解方程组,得D2,(2)当四边形ABCD的两对角线互相垂直时,由对称性得直线AO与x轴的夹角等于45所以点A的纵、横坐标相等, ··································································· 5分

124)m4. x,得a4,A(4,,4 即当m4时,四边形ABCD的两条对角线互相垂直. ··································· 7分 (3)线段CD2AB. ·················································································· 8分

这时,设A(a,a),代入y第9页 共10页

点A在抛物线y121x,且xm,Am,m2, 44 得直线AO的解析式为ymx, 4myx14 解方程组,得点C2m,·············································· 9分 m2 ·

2y1x28 由对称性得点 AB2m,CD4m,

CD2AB. ····················································································· 11分

, ········································· 10分

第10页 共10页

因篇幅问题不能全部显示,请点此查看更多更全内容