(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.
例6. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。 (1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?
(2)两车同时开出,相背而行多少小时后两车相距600公里?
(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里? (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车? (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?
7.储蓄问题
⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税 ⑵ 利息=本金×利率×期数. 本息和=本金+利息 利息税=利息×税率(20%)
例7. 某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税) 8. 劳力调配问题:
这类问题要搞清人数的变化,常见题型有: (1)既有调入又有调出;
(2)只有调入没有调出,调入部分变化,其余不变; (3)只有调出没有调入,调出部分变化,其余不变。 例8. 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?
9. 比例分配问题:
这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。 常用等量关系:各部分之和=总量。
例9. 三个正整数的比为1:2:4,它们的和是84,那么这三个数中最大的数是几?
一元一次方程的应用练习
1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4
小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作? 2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍? 3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,≈3.14).
4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长. 5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?
6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.
7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.
(1)某户八月份用电84千瓦时,共交电费30.72元,求a.
(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?•应交电费是多少元?
8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案. (2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
1.解:设甲、乙一起做还需x小时才能完成工作. 根据题意,得 16 ×
12 +( 16 + 14 )x=1
2.解:设x年后,兄的年龄是弟的年龄的2倍,
则x年后兄的年龄是15+x,弟的年龄是9+x.由题意,得2×(9+x)=15+x 3.解:设圆柱形水桶的高为x毫米,依题意,得:·( 2002 )2 x=300×300×80
4.解:设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,•过完第一铁桥所需 的时间为 600 x
分.过完第二铁桥所需的时间为 250600
x分.依题意,可列出方程 600 x+ 560 = 250 600 x
5.解:设这种三色冰淇淋中咖啡色配料为2x克,那么红色和白色配料分别为3x克和5x 克.根据题意,得2x+3x+5x=50 6.解:设这一天有x名工人加工甲种零件,则这天加工甲种零件有5x个,乙种零件有4 (16-x)个.根据题意,得16×5x+24×4(16-x)=1440 7.解:(1)由题意,得:0.4a+(84-a)×0.40×70%=30.72
(2)设九月份共用电x千瓦时,则:0.40×60+(x-60)×0.40×70%=0.36x 8.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算, 设购A种电视机x台,则B种电视机y台. ( 1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程 1500x+2100(50-x)
=90000, x=25, 50-x=25
②当选购A,C两种电视机时,C种电视机购(50-x)台, 可得方程1500x+2500(50-x)=90000, x=35,50-x=15
③当购B,C两种电视机时,C种电视机为(50-y)台. 可得方程2100y+2500(50-y)=90000 21y+25(50-y)=900,4y=350,不合题意
由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.
(2)若选择(1)中的方案①,可获利 150×25+250×15=8750(元) 若选择(1)中的方案②,可获利 150×35+250×15=9000(元) 9000>8750
故为了获利最多,选择第二种方案. 和差问题的公式:
(和+差)÷2=大数 , (和+差)÷2=大数 和倍问题
和÷(倍数-1)=小数 ,小数×倍数=大数 (或者 和-小数=大数) 差倍问题
差÷(倍数-1)=小数,小数×倍数=大数 (或 小数+差=大数) 植树问题
1、非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,
那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,
那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,
那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题
相遇路程=速度和×相遇时间,相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题
追及距离=速度差×追及时间,追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 利润与折扣问题 利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间,税后利息=本金×利率×时间×(1-20%) 生产问题:
单位时间生产量×生产时间=已生产量 原计划生产总量-已生产量=还要生产量 长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算
1吨=1000 千克 1千克=1000克 1千克=1公斤
因篇幅问题不能全部显示,请点此查看更多更全内容