中考数学试卷
一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的) 1.计算:(﹣)0=( )
A. 1
B.﹣
C. 0
D.
考点:零指数幂.
0
根,求出(﹣)0的值是多少即可. 分析: 据零指数幂:a=1(a≠0)
解(﹣)0=1. 解答: :
故选:A.
点评: 题主要考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1此
(a≠0);②00≠1.
2.(3分)(2021•陕西)如图是一个螺母的示意图,它的俯视图是( )
A.
B.
C.
D.
考点:简单组合体的三视图.
精品 Word 可修改 欢迎下载
分析:根据从上面看得到的图形是俯视图,可得答案.
解答:解:从上面看外面是一个正六边形,里面是一个没有圆心的圆,
故选:B.
点评:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.
3.(3分)(2021•陕西)下列计算正确的是( ) A. a 2•a3=a6 C. (a2)3=a5
B. (﹣2ab)2=4a2b2 D.3 a2b2÷a2b2=3ab
考点:整式的除法;同底数幂的乘法;幂的乘方与积的乘方.
分析:根据同底数幂的乘法、积的乘方、幂的乘方、整式的除法,即可解答.
解答: :A、a2•a3=a5,故正确; 解
B、正确;
C、(a2)3=a6,故错误; D、3a2b2÷a2b2=3,故错误;
故选:B.
点评:本题考查了同底数幂的乘法、积的乘方、幂的乘方、整式的除法,解决本题的关键是
精品 Word 可修改 欢迎下载
熟记同底数幂的乘法、积的乘方、幂的乘方、整式的除法的法则.
4.(3分)(2021•陕西)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,
则∠1的度数为( )
A. 4 3°30′
53°30′ B.
133°30′ C.
153°30′ D.
考点:平行线的性质.
分析:先根据平行线的性质求出∠EFD的度数,再根据补角的定义即可得出结论.
解答:解:∵AB∥CD,∠1=46°30′,
∴∠EFD=∠1=46°30′, ∴∠2=180°﹣46°30′=133°30′.
故选C.
点评:本题考查的是平行线的性质,用到的知识点为:两线平行,同位角相等.
精品 Word 可修改 欢迎下载
5.(3分)(2021•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的
增大而减小,则m=( )
A. 2 B. ﹣2 C. 4 D. ﹣4
考点:正比例函数的性质.
分析:直接根据正比例函数的性质和待定系数法求解即可.
解答:解:把x=m,y=4代入y=mx中,
可得:m=±2,
因为y的值随x值的增大而减小,
所以m=﹣2,
故选B
点评:本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0,图
象经过第一、三象限,y值随x的增大而增大;当k<0,图象经过第二、四象限,y
值随x的增大而减小.
6.(3分)(2021•陕西)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若
在边AB上截取BE=BC,连接DE,则图中等腰三角形共有( )
精品 Word 可修改 欢迎下载
A. 2 个
B. 3个
C. 4个
D. 5个
考点:等腰三角形的判定与性质.
分析:根据已知条件分别求出图中三角形的内角度数, 再根据等腰三角形的判定即可找出图
中的等腰三角形.
解答:解:∵AB=AC,
∴△ABC是等腰三角形; ∵AB=AC,∠A=36°, ∴∠ABC=∠C=72°, ∵BD是△ABC的角平分线, ∴∠ABD=∠DBC=∠ABC=36°,
∴∠A=∠ABD=36°, ∴BD=AD,
∴△ABD是等腰三角形;
在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,
精品 Word 可修改 欢迎下载
∴∠C=∠BDC=72°, ∴BD=BC,
∴△BCD是等腰三角形; ∵BE=BC, ∴BD=BE,
∴△BDE是等腰三角形; ∴∠BED=(180°﹣36°)÷2=72°, ∴∠ADE=∠BED﹣∠A=72°﹣36°=36°, ∴∠A=∠ADE, ∴DE=AE,
∴△ADE是等腰三角形; ∴图中的等腰三角形有5个.
故选D.
点评:此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定
理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,
精品 Word 可修改 欢迎下载
不要遗漏.
7.(3分)(2021•陕西)不等式组的最大整数解为( )
A. 8 B. 6 C. 5 D. 4
考点:一元一次不等式组的整数解.
分析:先求出各个不等式的解集,再求出不等式组的解集,最后求出答案即可.
解答: 解:
∵解不等式①得:x≥﹣8,
解不等式②得:x<6, ∴不等式组的解集为﹣8≤x<6, ∴不等式组的最大整数解为5,
故选C.
点评:本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据
不等式的解集求出不等式组的解集,难度适中.
精品 Word 可修改 欢迎下载
8.(3分)(2021•陕西)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:
y=﹣2x+4,则下列平移作法正确的是( )
A. 将 l1向右平移3个单位长度 B. 将l1向右平移6个单位长度
C. 将l1向上平移2个单位长度 D.将 l1向上平移4个单位长度
考点:一次函数图象与几何变换.
分析:利用一次函数图象的平移规律,左加右减,上加下减,得出即可.
解答: :∵将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4, 解
∴﹣2(x+a)﹣2=﹣2x+4,
解得:a=﹣3,
故将l1向右平移3个单位长度.
故选:A.
点评:此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.
9.(3分)(2021•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,
若四边形AECF为正方形,则AE的长为( )
A. 7 B. 4或10 C. 5或9 D. 6或8
精品 Word 可修改 欢迎下载
考点:平行四边形的性质;勾股定理;正方形的性质.
专题:分类讨论.
分析:设AE的长为x, 根据正方形的性质可得BE=14﹣x,根据勾股定理得到关于x的方程,
解方程即可得到AE的长.
解答:解:如图:
设AE的长为x,根据正方形的性质可得BE=14﹣x,
在△ABE中,根据勾股定理可得x2+(14﹣x)2=102,
解得x1=6,x2=8.
故AE的长为6或8.
故选:D.
点评:考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于
AE的方程.
10.(3分)(2021•陕西)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判
断,正确的是( )
精品 Word 可修改 欢迎下载
A. 没有交点
B. 只有一个交点,且它位于y轴右侧
C. 有两个交点,且它们均位于y轴左侧
D. 有两个交点,且它们均位于y轴右侧
考点:抛物线与x轴的交点.
分析:根据函数值为零,可得相应的方程,根据根的判别式,公式法求方程的根,可得答案.
解答: :当y=0时,ax2﹣2ax+1=0, 解
∵a>1
∴△=(﹣2a)2﹣4a=4a(a﹣1)>0, ax2﹣2ax+1=0有两个根,函数与有两个交点,
x=>0,
故选:D.
点评:本题考查了抛物线与x轴的交点,利用了函数与方程的关系,方程的求根公式.
二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)
11.(3分)(2021•陕西)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为 ﹣
6 .
精品 Word 可修改 欢迎下载
考点:实数大小比较.
分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的
反而小,据此判断即可.
解答: :解≈2.236,π≈3.14,
∵﹣6<0<2.236<3.14, ∴﹣6
.
故答案为:﹣6.
点评:此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实
数>0>负实数,两个负实数绝对值大的反而小.
12.(3分)(2021•陕西)正八边形一个内角的度数为 135° .
考点:多边形内角与外角.
分析:首先根据多边形内角和定理: (n﹣2)•180°(n≥3且n为正整数)求出内角和,然后
再计算一个内角的度数.
解答:解:正八边形的内角和为: (8﹣2)×180°=1080°,
精品 Word 可修改 欢迎下载
每一个内角的度数为×1080°=135°.
故答案为:135°.
点评:此题主要考查了多边形内角和定理,关键是熟练掌握计算公式: (n﹣2)•180 (n≥3)
且n为整数).
13.(2021•陕西)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,
则∠A的度数约为 27.8° (用科学计算器计算,结果精确到0.1°).
考点:解直角三角形的应用-坡度坡角问题.
分析:直接利用坡度的定义求得坡角的度数即可.
解解答: :∵tan∠A=
∴∠A=27.8°,
=≈0.5283,
故答案为:27.8°.
点评:本题考查了坡度坡角的知识, 解题时注意坡角的正切值等于铅直高度与水平宽度的比
值,难度不大.
精品 Word 可修改 欢迎下载
14.(3分)(2021•陕西)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为 10 .
考点:反比例函数系数k的几何意义.
设,点B的坐标为(c,d),根据反比例函数y=的图象过A,分析: 点A的坐标为(a,b)
B两点,所以ab=4,cd=4,进而得到S△AOC=|ab|=2,S△BOD=|cd|=2,
S矩形MCDO=3×2=6,根据四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO,即可解答.
解答:解:如图,
设点A的坐标为(a,b),点B的坐标为(c,d), ∵反比例函数y=的图象过A,B两点,
∴ab=4,cd=4,
精品 Word 可修改 欢迎下载
∴S△AOC=|ab|=2,S△BOD=|cd|=2,
∵点M(﹣3,2), ∴S矩形MCDO=3×2=6,
∴四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO=2+2+6=10,
故答案为:10.
本点评: 题主要考查反比例函数的对称性和k的几何意义,根据条件得出S△AOC=|ab|=2,
S△BOD=|cd|=2是解题的关键,注意k的几何意义的应用.
15.(3分)(2021•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是 3
.
考点:三角形中位线定理;等腰直角三角形;圆周角定理.
分析:根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径
后就可以求得最大值.
解答:解:∵点M,N分别是AB,BC的中点,
精品 Word 可修改 欢迎下载
∴MN=AC,
∴当AC取得最大值时,MN就取得最大值,
当AC时直径时,最大,
如图,
∵∠ACB=∠D=45°,AB=6, ∴AD=6
,
∴MN=AD=3
故答案为:3.
点评:本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键
是了解当什么时候MN的值最大,难度不大.
三、解答题(共11小题,计78分,解答时写出过程)
|+()3.
﹣
16.(5分)(2021•陕西)计算:×(﹣)+|﹣2
考点:二次根式的混合运算;负整数指数幂.
精品 Word 可修改 欢迎下载
专题:计算题.
分析: 据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣根+2+8,然后化
简后合并即可.
解答: :原式=﹣解+2+8
=﹣3+2+8
=8﹣.
点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的
乘除运算,然后合并同类二次根式.也考查了负整数整数幂、
17.(5分)(2021•陕西)解分式方程:﹣=1.
考点:解分式方程.
专题:计算题.
分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分
式方程的解.
解答: :去分母得:x2﹣5x+6﹣3x﹣9=x2﹣9, 解
解得:x=,
精品 Word 可修改 欢迎下载
经检验x=是分式方程的解.
点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整
式方程求解.解分式方程一定注意要验根.
18.(5分)(2021•陕西)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC
分成面积相等的两部分.(保留作图痕迹,不写作法)
考点:作图—复杂作图.
分析:作BC边上的中线,即可把△ABC分成面积相等的两部分.
解答:
解:如图,直线AD即为所求:
点评:此题主要考查三角形中线的作法,同时要掌握若两个三角形等底等高,则它们的面积
相等.
精品 Word 可修改 欢迎下载
19.(5分)(2021•陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情
况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”
测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果
分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将
统计结果绘制成如下两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)补全上面的条形统计图和扇形统计图;
(2)被测试女生1分钟“仰卧起坐”个数的中位数落在 良好 等级;
(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人
数.
考点:条形统计图;用样本估计总体;扇形统计图.
分析:(1)根据各个等级的百分比得出答案即可;
(2)根据中位数的定义知道中位数是第25和26个数的平均数,由此即可得出答案;
精品 Word 可修改 欢迎下载
(3)首先根据扇形图得出优秀人数占的百分比,条形统计图可以求出平均数的最小
值,然后即可求出答案.
解答:
解:(1)
;
(2)∵13+20+12+5=50,
50÷2=25,25+1=26, ∴中位数落在良好等级,
故答案为:良好;
(3)650×26%=169(人),
即该年级女生中1分钟“仰卧起坐”个数达到优秀的人数是169.
点评:本题难度中等,主要考查统计图表的识别;解本题要懂得频率分布直分图的意义.同
时考查了平均数和中位数的定义.
20.(7分)(2021•陕西)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,
作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.
精品 Word 可修改 欢迎下载
考点:全等三角形的判定与性质.
专题:证明题.
分析:根据平行线的性质得出∠EAC=∠ACB, 再利用ASA证出△ABD≌△CAE,从而得出
AD=CE.
解答:证明:∵AE∥BD,
∴∠EAC=∠ACB, ∵AB=AC, ∴∠B=∠ACB, ∴∠B=∠EAC,
在△ABD和△CAE中,
,
∴△ABD≌△CAE, ∴AD=CE.
点评:此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质、平
行线的性质,关键是利用ASA证出△ABD≌△CAE.
精品 Word 可修改 欢迎下载
21.(7分)(2021•陕西)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”
小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于
是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)
时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,
其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身
高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE
的长.(结果精确到0.01米)
考点:相似三角形的应用.
分析:先证明△CAD~△MND,利用相似三角形的性质求得MN=9.6,再证明△EFB~
△MFN,即可解答.
解答:解:由题意得:∠CAD=∠MND=90°,∠CDA=MDN,
∴△CAD~△MND,
精品 Word 可修改 欢迎下载
∴∴
,
,
∴MN=9.6,
又∵∠EBF=∠MNF=90°, ∠EFB=∠MFN, ∴△EFB~△MFN, ∴∴
,
∴EB≈1.75,
∴小军身高约为1.75米.
点评:本题考查的是相似三角形的判定及性质,解答此题的关键是相似三角形的判定.
22.(7分)(2021•陕西)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有
甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日
游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每
人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅
行社两日游的人数均为x人.
精品 Word 可修改 欢迎下载
(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数
关系式;
(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助
胡老师选择收取总费用较少的一家.
考点:一次函数的应用.
专题:应用题.
分析: 1)根据总费用等于人数乘以打折后的单价,易得y甲=640×0.85x,对于乙两家旅行(
社的总费用,分类讨论:当0≤x≤20时,y乙=640×0.9x;当x>20时,y乙
=640×0.9×20+640×0.75(x﹣20);
(2)把x=32分别代入(1)中对应得函数关系计算y甲和y乙的值,然后比较大小即
可.
解答: :解(1)甲两家旅行社的总费用:y甲=640×0.85x=544x;
乙两家旅行社的总费用:当0≤x≤20时,y乙=640×0.9x=576x;当x>20时,y乙
=640×0.9×20+640×0.75(x﹣20)=480x+1920;
(2)当x=32时,y甲=544×32=17408(元),y乙=480×32+1920=17280,
因为y甲>y乙,
精品 Word 可修改 欢迎下载
所以胡老师选择乙旅行社.
点评:本题考查了一次函数的应用:利用实际问题中的数量关系建立一次函数关系,特别对
乙旅行社的总费用要采用分段函数解决问题.
23.(7分)(2021•陕西)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求
每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在
他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛
(胜者参赛).
规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇
数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上
述游戏,直至分出胜负为止.
如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:
(1)小亮掷得向上一面的点数为奇数的概率是多少?
(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,
2,3,4,5,6个小圆点的小正方体)
考点:游戏公平性;列表法与树状图法.
精品 Word 可修改 欢迎下载
分析:(1)首先判断出向上一面的点数为奇数有3种情况,然后根据概率公式,求出小亮
掷得向上一面的点数为奇数的概率是多少即可.
(2)首先应用列表法,列举出所有可能的结果,然后分别判断出小亮、小丽获胜的
概率是多少,再比较它们的大小,判断出该游戏是否公平即可.
解答:解: (1)∵向上一面的点数为奇数有3种情况,
∴小亮掷得向上一面的点数为奇数的概率是:
.
(2)填表如下:
1 2 3 4 5 6
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
由上表可知,一共有36种等可能的结果,其中小亮、小丽获胜各有9种结果. ∴P(小亮胜)=
,P(小丽胜)=
=,
精品 Word 可修改 欢迎下载
∴游戏是公平的.
点评:(1)此题主要考查了判断游戏公平性问题,要熟练掌握,首先计算每个事件的概率,
然后比较概率的大小,概率相等就公平,否则就不公平.
(2)此题主要考查了列举法(树形图法)求概率问题,解答此类问题的关键在于列
举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重
不漏地列出所有可能的结果,通常采用树形图.
24.(8分)(2021•陕西)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线
DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.
(1)求证:∠BAD=∠E;
(2)若⊙O的半径为5,AC=8,求BE的长.
考点:切线的性质;勾股定理;相似三角形的判定与性质.
分析:(1)根据切线的性质,和等角的余角相等证明即可;
(2)根据勾股定理和相似三角形进行解答即可.
精品 Word 可修改 欢迎下载
解答:(1)证明:∵AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,
∴∠ABE=90°, ∴∠BAE+∠E=90°, ∵∠DAE=90°, ∴∠BAD+∠BAE=90°, ∴∠BAD=∠E;
(2)解:连接BC,如图:
∵AB是⊙O的直径, ∴∠ACB=90°, ∵AC=8,AB=2×5=10, ∴BC=
,
∵∠BCA=∠ABE=90°,∠BAD=∠E, ∴△ABC∽△EAB, ∴∴
, ,
精品 Word 可修改 欢迎下载
∴BE=.
点评:本题考查了切线的性质、相似三角形等知识点,关键是根据切线的性质和相似三角形
的性质分析.
25.(10分)(2021•陕西)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交
于A,B两点,与y轴交于C点.
(1)求点A,B,C的坐标;
(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;
(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以
A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不
是菱形的平行四边形的面积.
考点:二次函数综合题.
分析:(1)令y=0,求出x的值;令x=0,求出y,即可解答;
(2)先求出A,B,C关于坐标原点O对称后的点为(4,0),(1,0),(0,﹣4),
再代入解析式,即可解答;
(3)取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′,由中心对称性可
精品 Word 可修改 欢迎下载
知,MM′过点O,OA=OA′,OM=OM′,由此判定四边形AMA′M′为平行四边形,又
知AA′与MM′不垂直,从而平行四边形AMA′M′不是菱形,过点M作MD⊥x轴于点D,求出抛物线的顶点坐标M,根据
,即可解答.
解答: :解(1)令y=0,得x2+5x+4=0,
∴x1=﹣4,x2=﹣1,
令x=0,得y=4,
∴A(﹣4,0),B(﹣1,0),C(0,4).
(2)∵A,B,C关于坐标原点O对称后的点为(4,0),(1,0),(0,﹣4),
∴所求抛物线的函数表达式为y=ax2+bx﹣4,
将(4,0),(1,0)代入上式,得
解得:,
∴y=﹣x2+5x﹣4.
(3)如图,取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′,
由中心对称性可知,MM′过点O,OA=OA′,OM=OM′, ∴四边形AMA′M′为平行四边形,
又知AA′与MM′不垂直, ∴平行四边形AMA′M′不是菱形,
精品 Word 可修改 欢迎下载
过点M作MD⊥x轴于点D,
∵y=∴M(
),
,
又∵A(﹣4,0),A′(4,0) ∴AA′=8,MD=, ∴
=
点评:本题考查了二次函数的性质与图象、中心对称、平行四边形的判定、菱形的判定,综
合性较强,解决本题的关键是根据中心对称,求出抛物线的解析式,在(3)中注意
菱形的判定与数形结合思想的应用.
26.(12分)(2021•陕西)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.
(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为 24 ;
精品 Word 可修改 欢迎下载
(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;
(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?
若存在,求出此时cos∠BPC的值;若不存在,请说明理由.
考点:四边形综合题.
专题:综合题.
分析:(1)如图①,过A作AE⊥BC,可得出四边形AECF为矩形,得到EC=AD,BE=BC
﹣EC,在直角三角形ABE中,求出AE的长,即为三角形BMC的高,求出三角形
BMC面积即可;
(2)如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,
连接CN′,则BN+NC=BN+NC′≥BC′=BN′+CN′,可得出△BNC周长的最小值为△BN′C
的周长=BN′+CN′+BC=BC′+BC,求出即可;
(3)如图③所示,存在点P,使得cos∠BPC的值最小,作BC的中垂线PQ交BC
于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于
点N,则PB=PC,圆心O在PN上,根据AD与BC平行,得到圆O与AD相切,根
精品 Word 可修改 欢迎下载
据PQ=DC,判断得到PQ大于BQ,可得出圆心O在BC上方,在AD上任取一点P′,
连接P′B,P′C,P′B交圆O于点M,连接MC,可得∠BPC=∠BMC≥∠BP′C,即∠BPC
最小,cos∠BPC的值最小,连接OB,求出即可.
解答:解: (1)如图①,过A作AE⊥BC,
∴四边形AECD为矩形,
∴EC=AD=8,BE=BC﹣EC=12﹣8=4,
在Rt△ABE中,∠ABE=60°,BE=4, ∴AB=2BE=8,AE=
=4
,
则S△BMC=BC•AE=24;
故答案为:24;
(2)如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,
连接CN′,则BN+NC=BN+NC′≥BC′=BN′+CN′,
∴△BNC周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC, ∵AD∥BC,AE⊥BC,∠ABC=60°, ∴过点A作AE⊥BC,则CE=AD=8, ∴BE=4,AE=BE•tan60°=4∴CC′=2CD=2AE=8
,
,
精品 Word 可修改 欢迎下载
∵BC=12, ∴BC′=
=4
,
∴△BNC周长的最小值为4+12;
(3)如图③所示,存在点P,使得cos∠BPC的值最小,
作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆
O,圆O与直线PQ交于点N,则PB=PC,圆心O在PN上, ∵AD∥BC,
∴圆O与AD相切于点P, ∵PQ=DC=4∴PQ>BQ,
∴∠BPC<90°,圆心O在弦BC的上方,
>6,
在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC, ∴∠BPC=∠BMC≥∠BP′C,
∴∠BPC最大,cos∠BPC的值最小,
连接OB,则∠BON=2∠BPN=∠BPC,
∵OB=OP=4﹣OQ,
﹣OQ)2,
在Rt△BOQ中,根据勾股定理得:OQ2+62=(4
精品 Word 可修改 欢迎下载
解得:OQ=∴OB=
,
,
∴cos∠BPC=cos∠BOQ==,
则此时cos∠BPC的值为.
点评:此题属于四边形综合题,涉及的知识有:勾股定理,矩形的判定与性质,对称的性质,
圆的切线的判定与性质,以及锐角三角函数定义,熟练掌握定理及性质是解本题的关
键.
精品 Word 可修改 欢迎下载
因篇幅问题不能全部显示,请点此查看更多更全内容