StochasticDifferentialEquationWithMemory.
YuriBakhtin1
1Introduction.
Inthispaperastochasticdifferentialequation(SDE)withinfinitememoryisconsidered.Thedriftcoefficientoftheequationisanonlinearfunctionalofthepasthistoryofthesolution.Sufficientconditionsforexistenceanduniquenessofstationarysolutionaregiven.Thisworkismotivatedbyrecentpapers[1]and[2]wherestochasticallyforcednonlinearequationsofhydrodynamicswereconsideredanditwasshownhowtheinfinite-dimensionalstochasticMarkoviandynamicsrelatedtotheseequationscanbereducedtofinite-dimensionalstochasticdynamics.Thecorrespondingfinite-dimensionalsystemsarehoweveressentiallynon-Markovian.
So,theimportantproblemofexistenceanduniquenessofstationarysolutionsforstochastichydrodynamicalequationsistightlyrelatedtoexistenceanduniquenessofsta-tionarysolutionsofSDEswithinfinitememory.Someresultsintheareawereestablishedin[3].Inthefirstpartofthispapersomenecessarynotionsareintroducedandthemainresultisstated.Aproofofthemainresultisgiveninthesecondpart.Wecombinetheap-proachof[3]withaninterestingmethodforestablishingthedesireduniquenesssuggestedin[1]and[2]fortheproblemsconsideredtherein.
Theequationunderconsiderationis
dX(t)=a(πtX)dt+dW(t).
(1)
HereW(t),t∈Risstandardd−dimensionalWienerprocess(i.e.aGaussianRd-valuedstochasticprocesswithcontinuoustrajectoriesdefinedonthewholereallineRwithindependentandstationaryincrements,W(0)=0,EW(t)=0,EW(t)2=|t|,t∈R),πtisamapfromthespaceCofRd-valuedcontinuosfunctionsdefinedonRtothespaceC−ofcontinuousfunctionsdefinedonR−=(−∞,0]:
πtX(s)=X(s+t),
s∈R−.
Thismapgivesthepasthistoryofacontinuousprocessuptotimet∈R.Fromnowonsupposea(·):C−→Rdtobeacontinuousfunctionalwithrespecttometric
ρ−(f,g)
∞=
2−n(f−gn∧1),
f,g∈C−,
n=1
whichdefinesLU-topologyonthespaceC−.Herehn=max−n≤t≤0|h(t)|,and|·|
denotestheEuclideannorm.
ForastochasticprocessXandasetA⊂Rtheσ-algebrageneratedbyr.v.’sX(s),s∈AwillbedenotedbyσA(X)andtheσ-algebrageneratedbyr.v.’sX(s)−X(t),s,t∈AwillbedenotedbyσA(dX).
ConsiderthespaceΩ=C×Cwiththemetricanalogoustothemetricρ−definedabove.
AprobabilitymeasurePonthespaceΩwithBorelσ-algebraBissaidtodefineasolutiontotheequation(1)onRifthefollowingthreeconditionsarefulfilledwithrespecttothemeasureP:
1.TheprojectionW:C×C→C,ω=(ω1,ω2)→ω2,isastandardd-dimensionalWienerprocess.
2.Foranyt∈R
σ(−∞,t](X)∨σ(−∞,t](dW)isindependentof
σ[t,∞)(dW).
(2)
HereandfurtherX:C×C→C,ω=(ω1,ω2)→ω1.
3.Ifs a(πθX)dθ+W(t)−W(s).X(t)−X(s)= s (3) Ifinadditionthedistributionoftheprocess (X,dW)≡(X(t),−∞ Let’sstatethemainresult. Theorem1.Letthedriftcoefficienta(·)satisfythefollowingconditions:1.ThereexistsuchconstantsK>0,λ>0thattheestimate 0 eλt|x−(t)−y−(t)|dt(4)|a(x−)−a(y−)|≤K −∞ isfulfilledwheneverx−,y−∈C−,x−(0)=y−(0)andtheintegralintheright-handsideis finite. 2.ThereexistsuchconstantsC1≥0andC2>0that (a(x−),x−(0))≤C1−C2|x−(0)|2, 3.ThereexistsuchaconstantC3>0that |a(x−)|≤C3|x−(0)|, x−∈C−. (6) x−∈C−. (5) ThenthereexistaprobabilisticmeasurePonthespaceC×Cwhichdefinesastationarysolutionoftheequation(1).SuchmeasureisuniqueintheclassofmeasuresforwhichalmosteveryrealizationXpossessesthefollowingproperty: |X(t)|≤K′eλ|t|, ′ t≤0.(7) HereK′∈Randλ′∈(0,λ)aresomeconstantsdependingontherealizationX. 2 2Proofofthemainresult. First,letusprovetheexistenceofthestationarysolutionusingtheKrylov–Bogolyubovapproach. AprobabilisticlawinC×CissaidtodefineasolutionofCauchyproblemfortheequation(1)withinitialdatax−∈C−ifthefollowingconditionsaresatisfied:WisastandardWienerprocess;foreveryt∈Rtherelation(2)istrue;theequality(3)isfulfilledfors=0andeveryt>0;X(t)=x−(t)foranyt<0.ExistencetheoremforsolutionsofCauchyproblemisprovedin[3]. LetP0denotesuchalawfortheinitialdataidenticallyequaltozeroandPsdenotethetimes-shiftofthisdistributioni.e.asolutionoftheCauchyproblemsubjecttozero initial−1fdatadefinedontheset(−∞,s],s∈R.FormallyPs=P0θwhereθ(f,g)=(f,=f(t−s),g(t)=g(t−s)−g(−s). SincethefunctionPs(E)ismeasurablewithrespecttosforallE∈B(see[3]),g),(t)ss forT>0onecandefineapropabilitymeasure QT(·)= 1 NowletusestimateincrementsoftheprocessX.QT{|X(t2)−X(t1)|>z} ≤QT{|W(t2)−W(t1)|>z/2}+QT a(πθX)dθ>z/2 t2t1 t2 t1 ≤16z−4EQT|W(t2)−W(t1)|4+4z−2EQT a(πθX)dθ 2 .(9) ThenextinequalityisaconsequenceoftheFubinitheorem,elementaryinequality|xy|≤(x2+y2)/2,well-knownexpressionformomentsofGaussiandistributionandrelations(6)and(9): 2−2 QT{|X(t2)−X(t1)|>z}≤48z−4|t2−t1|2+4C3zM|t2−t1|2. (10) TightnessofthefamilyofprojectionsofmeasuresQTonthefirstcomponent{QTX−1} andhencethedesiredtightnessofthefamily{QT}isimpliednowby(8)and(10).So,QTn→Q∞whenn→∞forsomesequence(Tn)n∈Nandresultsof[3]implythatQ∞definesastationarysolutionoftheequation(1). Lemma1.Foranyδ>0thefollowingestimateistrueP−a.s. t→−∞ Law lim|Xt|·|t|1/2+δ=0. Proof.AnestimateformeasureP,analogoustotheestimate(10),imliesthatforanys∈R Pmax|X(t)|>Kz≤P{X(s)>z}+P{X(s+1)>z}+C(z−2+z−4) t∈[s,s+1] forsufficientlylargeconstantsK,C>0.UsingthisinequalityandChebyshevinequalityanduniformint∈Rboundednessofthesecond-ordermomentofX(t)oneobtainsthatforallδ0∈(0,δ)theseries ∞ P n=0 t∈[−n−1,−n] max |X(t)|>Kn1/2+δ0 isconvergentandthelemmafollowsfromtheBorel–Kantellylemma. Inparticular,Lemma1impliesthatthetrajectoriesoftheprocessXsatisfythecon-dition(7)P-a.s. Nowweturntotheproofofuniqueness.ConsideranarbitrarymeasurePwhichdefinesastationarysolutionoftheequation(1).SupposealsothattherealizationsoftheprocessXsatisfycondition(7)P-a.s.IntroduceaspaceC+ofRd-valuedcontinuousfunctionsdefinedonR+=[0,∞).Forx−∈C−wedenotePx−themeasureonΩ+=C+×C+whichdefinesasolutionofCauchyproblemwiththeinitialdatax−.Px−isaconditionaldistributionofthemeasurePconditionedonX−=x−. 4 Lemma2.Condition1ofTheorem1impliesthatthereexistsasetA⊂C−suchthatP(π0X∈A)=1andifx−,y−∈Ax−(0)=y−(0)thenthemeasuresPx−andPy−areequivalent. Proof.Considerx−,y−∈C−suchthateachofthesefunctionsadmitsanexponentialestimatelike(7).ToprovethatPy−isabsolutelycontinuouswithrespecttoPxcondition(see,e.g.,[5,Chapter−,weusetheGirsanovtheoremandverifythNovikov8]).Thesamereasoningwillbevalidforinterchangedx−andy−. TheNovikovconditioncanbewrittenasfollows: EPx−exp 1 SupposetherearetwodifferentergodicmeasuresP(1)P(2)definingstationarysolu-tions.ThereexistsaboundedfunctionalFsuchthat F2, andforsomeS>0x(s)=y(s),s∈[0,S]impliesF(x)=F(y). ThenthereexistsetsB1,B2∈BsuchthatP(i)(Bi)=1and lim 1 FionBi,i=1,2. T→∞ Lemmas3and5implythat P(2)(B1)= P(2)(B1|X(0)=l)P(2)(X(0)∈dl)>0. Rd F2.So,P(2)(B1∩B2)>0andB1∩B2=∅,whichcontradictstheassumption TheauthorisgratefultoProfessorYa.G.Sinaiforstatementoftheproblemandusefuldiscussions. References [1]EW.,MattinglyJ.C.,SinaiYa.G.Gibbsiandynamicsandergodicityforthestochastically forced2DNavier–Stokesequation,—Commun.Math.Phys.V.224,No.1,2001,p.83-106.[2]EW.,LiuD.,GibbsiandynamicsandinvariantmeasuresforstochasticdissipativePDEs,— toappearinJ.Stat.Phys.,V.108,No.5/6,2002.[3]ItoK.,NisioM.Onstationarysolutionsofastochasticdifferentialequation,—J.Math. KyotoUniv.V.4,1964,p.1–75.[4]BillingsleyP.Convergenceofprobabilitymeasures.N.Y:JohnWiley&Sons,1968.[5]RevuzD.,YorM.ContinuousmartingalesandBrownianmotionI.Berlin–Heidelberg: Springer-Verlag,1994. 6 因篇幅问题不能全部显示,请点此查看更多更全内容