测量物体的转动惯量
1.刚体的转动定律
具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:
M = Iβ (1)
利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。 2.应用转动定律求转动惯量
如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。刚体受到张力的力矩为Tr和轴摩擦力力矩Mf。由转动定律可得到刚体的转动运动方程:Tr - Mf = Iβ。绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:
m(g - a)r - Mf = 2hI/rt (2)
Mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a< 式中r、h、t可直接测量到,m是试验中任意选定的。因此可根据(3)用实验的方法求得转动惯量I。 3.验证转动定律,求转动惯量 从(3)出发,考虑用以下两种方法: A.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为: M = K1/ t (4) 式中K1 = 2hI/ gr为常量。上式表明:所用砝码的质量与下落时间t的平方成反比。实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系 2 2 2 2 2 2 2 上作图,应是直线。即若所作的图是直线,便验证了转动定律。 从m – 1/t图中测得斜率K1,并用已知的h、r、g值,由K1 = 2hI/ gr求得刚体的I。 B.作r – 1/t图法:配重物的位置不变,即选定一个刚体,取砝码m和下落高度h为固定值。将式(3)写为: r = K2/ t (5) 式中K2 = (2hI/ mg)是常量。上式表明r与1/t成正比关系。实验中换用不同的塔轮半径r,测得同一质量的砝码下落时间t,用所得一组数据作r-1/t图,应是直线。即若所作图是直线,便验证了转动定律。 从r-1/t图上测得斜率,并用已知的m、h、g值,由K2 = (2hI/ mg)求出刚体的I。 实验仪器 刚体转动仪,滑轮,秒表,砝码 刚体转动仪包括: A.、塔轮,由五个不同半径的圆盘组成。上面绕有挂小砝码的细线,由它对刚体施加外力矩。 B、对称形的细长伸杆,上有圆柱形配重物,调节其在杆上位置即可改变转动惯量。与A和配重物构成一个刚体。 C.、底座调节螺钉,用于调节底座水平,使转动轴垂直于水平面。 此外还有转向定滑轮,起始点标志,滑轮高度调节螺钉等部分。 实验内容 1. 调节实验装置: 调节转轴垂直于水平面调节滑轮高度,使拉线与塔轮轴垂直,并与滑轮面共面。选定砝码下落起点到地面的高度h,并保持不变。 2.观察刚体质量分布对转动惯量的影响 取塔轮半径为3.00cm,砝码质量为20g,保持高度h不变,将配重物逐次取三种不同的位置,分别测量砝码下落的时间,分析下落时间与转动惯量的关系。本项实验只作定性说明,不作数据计算。 3.测量质量与下落时间关系: 测量的基本内容是:更换不同质量的砝码,测量其下落时间t。 用游标卡尺测量塔轮半径,用钢尺测量高度,砝码质量按已给定数为每个5.0g;用秒表记录下落时间。 将两个配重物放在横杆上固定位置,选用塔轮半径为某一固定值。将拉线平行缠绕在轮上。逐次选用不同质量的砝码,用秒表分别测量砝码从静止状态 1/2 1/2 2 2 开始下落到达地面的时间。对每种质量的砝码,测量三次下落时间,取平均值。砝码质量从5g开始,每次增加5g,直到35g止。 N 用所测数据作图,从图中求出直线的斜率,从而计算转动惯量。 4.测量半径与下落时间关系 测量的基本内容是:对同一质量的砝码,更换不同的塔轮半径,测量不同的下落时间。 将两个配重物选在横杆上固定位置,用固定质量砝码施力,逐次选用不同的塔轮半径,测砝码落地所用时间。对每一塔轮半径,测三次砝码落地之间,取其平均值。注意,在更换半径是要相应的调节滑轮高度,并使绕过滑轮的拉线与塔轮平面共面。由测得的数据作图,从图上求出斜率,并计算转动惯量。 1、m-1/t2的数据与图像: 2、r—1/t的数据与图像: 因篇幅问题不能全部显示,请点此查看更多更全内容