您的当前位置:首页数学发展史结课论文

数学发展史结课论文

2024-06-17 来源:乌哈旅游
数学发展史结课论文

交通运输学院

1502班

刘文涛

15251041

2016年6

浅谈古代和近代数学发展史

摘要:数学发展的历史是悠久的,在几千年前就已经有先贤开始对无穷无尽的数学世界进行探究,很多数学方法的研究都是来自于社会生活。数学发展中的很多思想也体现了人类不断发展的历程,很多数学结晶是用无数汗水与经验总结出的。通过研究数学发展的历史,文章对数学的发展历程和思想尽可能全面的进行了简单的概括和论述,指出研究数学发展史的重要意义,并将这数学思想运用到我们的生活中,提高思维分析能力,增强对数学的理解,对今后数学的研究与发展做出更大的贡献。

中华民族是一个具有悠久历史和灿烂文化的民族,在灿烂的文化瑰宝中数学在世界数学发展史中也同样具有许多耀眼的光环。研究中国的数学发展历程有着重要的现实意义,这对未来数学发展的规律也许会有一点启发。

关键词:数学 发展史 古代数学 1.中国古代数学的发展史

起源与早期发展。数学是研究数和形的科学,是中国古代科学中一门重要的学科。中国数学发展的萌芽期可以追溯到先秦时期,最早的记数法在殷墟出土的甲骨文卜辞中可以找到记数的文字。如独立的记数符号一到十,百、千、万,最大的数字为三万,还有十进制的记数法。 在春秋时期出现中国最古老的计算工具——算筹,使用算筹进行计算称为筹算,中国古代数学的最大特点就是建立在筹算基础之上。古代的算筹多为竹子制成的同样长短和粗细的小棍子,用算筹记数有纵、

横两种方式,个位用纵式,十位用横式,以此类推,并以空位表示零。这与西方及阿拉伯数学是明显不同的。在几何学方面,在《史记·夏本记》中记录到夏禹治水时已使用了规、矩、准、绳等作图和测量工具,勾股定理中的“勾三股四弦五”已被发现。

中国数学体系的形成与奠基时期。这一时期包括秦汉、魏晋、南北朝,共 400 年间的数学发展历史。中国古代的数学体系形成在秦汉时期,随着数学知识的不断系统化、理论化,相应的数学专书也陆续出现,如西汉初的《算数书》、西汉末年的《周髀算经》、东汉初年的《九章算术》以及南北朝时期的《孙子算经》、《夏侯阳算经》、《张丘建算经》等一系列算学著作。《周髀算经》编纂于西汉末年,提出勾股定理的特例及普遍形式以及测太阳高、远的陈子测日法;《九章算术》成书于东汉初年,以问题形式编写,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章,特点在于注重理论联系实际,形成了以筹算为中心的数学体系。中国数学在魏晋时期有了较大的发展,其中赵爽和刘徽的工作被认为是中国古代数学理论体系的开端。赵爽证明了数学定理和公式,详尽注释了《周髀算经》,其中一段 530 余字的“勾股圆方图”注文是数学史上极有价值的文献。刘徽的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。在南北朝时期数学的发展依然蓬勃,出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作。最具代表性的著作是祖冲之、祖父子撰写的《缀术》,圆周率精确到小数点后六位,推导出球体体积的正确公式,发展了二次与三次方程的解法。

中国古代数学发展的盛衰时期。宋、元两代是中国古代数学空前繁荣,硕果累累的全盛时期。出现了一批著名的数学家和数学著作,其中最具代表性的数学家是秦九韶和杨辉。秦九韶在其著作的《数学九章》中创造了 \" 大衍求 1 术 \"(整数论中的一次同余式求解法),被称为“中国剩余定理”,在近代数学和现代电子计算设计中起到重要的作用。他所论的“正负开方术”(数学高次方程根法),被称为“秦九韶程序”。现在世界各国从小学、中学、大学的数学课程,几乎都接触到他的定理、定律、解题原则。杨辉,中国南宋时期杰出的数学家和数学教育家,他在1261 年所著的《详解九章算法》一书中,给出了二项式系数在三角形中的一种几何排列,这个三角形数表称为杨辉三角。“杨辉三角”在西方又称为“帕斯卡三角形”,但杨辉比帕斯卡早 400 多年发现。随后从十四世纪中叶明王朝建立到明末的 1582 年,数学除了珠算外出现全面衰弱的局面。明代最大的成就是珠算的普及,出现了许多珠算读本,珠算理论已成系统,标志着从筹算到珠算转变的完成。在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具。但由于珠算流行,筹算几乎绝迹,建立在筹算基础上的古代数学也逐渐失传,数学出现长期停滞。 2.近现代数学的发展史

中国近现代数学发展时期是指从 20 世纪初至今的一段时间,开始 于清末民初的大批留学生的回国后,各地大学的数学教育有了明显的 起色,很多回国人员后成为著名的数学家和数学教育家,在世界都具有重要的影响,为中国近现代数学发展做出了重要贡献,这些著名的

数学家及其贡献主要有:陈景润及其代表作。陈景润是世界著名解析数论学家之一。1966 年,陈景润攻克了世界著名数学难题“哥德巴赫猜想”中的(1+2),在哥德巴赫猜想的研究上居世界领先地位,距摘取这颗数论皇冠上的明珠(1+ 1)只是一步之遥,于 1978 年和 1982 年两次收到国际数学家大会的邀请,在其他数论问题的成就在世界领域也是遥遥领先的。 华罗庚及其贡献。华罗庚是近代世界著名的中国数学家,对数学的贡献是多方面的。在数论、矩阵几何学、典型群、自守函数论、多个复变函数论、偏微分方程及高维数值积分等领域都做出了卓越的贡献。他解决了高斯完整三角和的估计,推进华林问题、塔里问题的结果,在圆法与三角和估计法方面的结果长期居世界领先地位,著作有《堆垒素数论》、《数论导引》、《典型域上的多元复变量函数论》及合著《数论在近似分析中的应用》。他在普及应用数学方法、培养青年数学家等上都有特殊贡献。苏步青及其成就。苏步青是中国科学院院士,国内外享有成名的数学家。主要从事微分几何学和计算几何学等方面的研究。他在仿射微分几何学和射影微分几何学研究方面取得出色成果,在一般空间微分几何学、高维空间共轭理论、几何外型设计、计算机辅助几何设计等方面取得突出成就,对培养中国早期的数学人才曾起了巨大的推进作用。吴文俊及其贡献。吴文俊是数学界的战略科学家,现任中国科学院院士,第三世界科学院院士。曾获得首届国家自然科学一等奖(1956)、中国科学院自然科学一等奖(1979)、第三世界科学院数学奖(1990)、陈嘉庚数理科学奖(1993)、首届香港求是科技基金会杰出科学家奖(1994)、首届国家最

高科技奖(2000)、第三届邵逸夫数学奖(2006)。他在拓扑学、自动推理、机器证明、代数几何、中国数学史、对策论等研究领域均有杰出的贡献,他的“吴方法”在国际机器证明领域产生巨大的影响,有广泛重要的应用价值。

3 研究中国数学发展史的重要意义

师都对数学史都有着深远的研究。研究数学发展史可以为我们提供 经验教训和历史借鉴,使我们的科学研究方向少走弯路或错路。从数学发展史中,我们要明白数学是一种文化,是形成现代文化的主要力量,是文化极其重要的因素。数学的概念来源于经验,与自然科学的生活世纪密不可分,在经过数学家严格的加工与推理后形成数学这门科学。研究数学的发展历史,弄清一个概念的来龙去脉,一个理论的兴旺和衰落,影响一种重要思想的产生的历史因素,有利于了解数学的现状,指导数学的未来,更好地接受以及学习数学,从历史的发展中获得借鉴和汲取教益,促进现实的科学研究,从而使数学与我们的生活更加贴切。 4.数学科学与社会发展

从历史上看,远在巴比伦、埃及时代,由于人类生活和劳动生产的需要积累了一系列算术和几何的知识。经过希腊时代,将这些比较零散的知识上升为理论的系统。西方文艺复兴时期,在数学方面,创立了解析几何,发明了微积分,使数学由常量数学发展到变量数学的新阶段。从17世纪到19世纪时期,人们以极大的热情将数学应用到很多领域,取得了重大的成就,积累了大量新的数学知识和方法。为了使

成果可靠并且取得进一步发展的基础,人们在19世纪又建立起微积分的理论基础和严格体系。这一系列数学理论进展催生了20世纪前期纯粹数学的大发展。数学理论得到空前发展,其中数学的形式主义和结构主义产生了广泛的影响,直至影响到基础数学教育的教学内容和方法。从20世纪后半期开始,纯粹数学还在迅速地发展,并进入更加广泛深入应用于科学、技术、经济、管理等众多领域的时代,数学发展史课程论文。数学与数学的应用在更高层次上结合,特别是在高新技术领域方面的进展层出不穷,甚至出乎人们的预料,展现出它对社会发展的巨大推动作用。

因篇幅问题不能全部显示,请点此查看更多更全内容