您的当前位置:首页与天气系统发生和发展有关的非均匀饱和湿位涡理论分析

与天气系统发生和发展有关的非均匀饱和湿位涡理论分析

2024-06-29 来源:乌哈旅游
维普资讯 http://www.cqvip.com

第23卷第5期 2007年1O月 热TROPICAL 带气象METEOROLOGY 学报 JOURNAL OF Vo1.23,No.5 Oct..2007 文章编号:1004—4965(2007)05—0459—08 与天气系统发生和发展有关的非均匀 饱和湿位涡理论分析 王兴荣 ,魏鸣2 (1.安徽省气象科学研究所,安徽合肥230061; 2.南京信息工程大学中美合作遥感实验室,江苏省气象灾害重点实验室,江苏南京2 1O044) 摘 要:在动力气象理论方面,无论大尺度、中尺度还是小尺度大气运动,对于同一尺度之内大气运动演 变机制,有着相当完美的讨论。然而,对于不同尺度天气系统之间转换演变机制讨论,即使因为它与天气系 统的出现和发展密切相关而显得非常重要,却很少涉及。为了讨论这个重要的转换演变机制,在导出无粘滞非 均匀饱和湿位涡(NUSMPV)方程的基础上,首先,通过对这方程进行数理分析证明:在非均匀饱和湿绝热大气 运动中,干区和饱和区之间的不饱和区的NUSMPV是不守恒的,并进一步证明:只在次饱和区(0.78<q/q <1), NUSMPV不守恒才是明显的,而在其它不饱和区,NUSMPV是接近守恒的。接着,根据守恒的相对性原理, 通过NUSMPV无因次形式的讨论,把大气运动分成三类,即NUSMPV守恒,准守恒和不守恒运动。然后用数 理分析方法讨论了各类运动的出现条件,时空之间关系,物理机制和一些特征。最后分析了不同尺度之间天气 系统的转换机制,指出:当与狭义NUSMPV(P0)有关的涡管项(A)和非绝热加热项(B)之间的动力不平衡(A+B)/P0 减少,以至NUSMPV守恒条件满足时,大气运动将主要通过非常快的频散适应过程继续失去不平衡能量,从 较小尺度向较大尺度转换;而当(A+B)/P0增加,以至NUSMPV不守恒条件满足时,大气运动将主要通过非常 快的外源激发过程,而从较大尺度向较小尺度转换。无论上述两种转换过程是那一种,一旦产生都将持续进行, 直至大气运动重新回到NUSMPV准守恒运动状态。 关键词:非均匀饱和湿位涡;不同尺度之间天气系统:转换机制 文献标识码:A 中图分类号:P433 来替代位温 ,湿位涡(MPV)在无粘滞湿绝热饱和 1引 言 过程中就成为守恒了。自从Bennetts和Hoskins (1979)[41以及Emanuel(1979)151第一次提出条件对称不 目前,在动力气象理论方面,无论大尺度、中 尺度还是小尺度大气运动,对于同一尺度之内大气 稳定(CSI)作为锋面雨带形成的一个可能机制以来, MPV概念已被广泛地应用于斜压系统CSI研究中。 运动演变机制,有着相当完美的讨论…。然而,对于 不同尺度天气系统之间转换演变机制讨论,即使因 为它与天气系统的出现和发展密切相关而显得非常 重要,却很少涉及。 自此之后,人们凭借DPV守恒性,可逆性(Robinson (1988) ;Davis(1992) ;Huo等(1999)I81)和位涡物质 的不可穿越性(Haynes和Mcintyre(1990)191),广泛地使 用它来解决与大尺度天气现象有关的问题【5 】。近年 来,在无粘滞湿绝热饱和气流湿位涡(MPV)守恒基 Ertel(1942)提出位涡(DPV)概念,并指出在无粘 滞干绝热气流里DPV是严格守恒的 l。Hoskins等 (1985)在大气现象诊断研究中对DPV的应用作出了 系统的分析,并引入了等熵位涡的概念【]l。当考虑潜 热释放时DPV是不守恒的。然而,通过用相当位温 础上,吴国雄等提出了倾斜涡度发展理论,指出涡 旋较容易发生在陡峭湿等熵面上¨。’ ;Schube ̄等 (2001)通过引进由干空气密度和气载水份(水汽和云) 组成的总密度P,有效位温op:TP(poIp1 (其中有 收稿日期:2006.06—05;修订日期:2006—12.18 作者简介:王兴荣,男,江苏省扬州人,正研级高级工程师,研究方向为天气学、动力气象学、城市气候和污染气象等。e—mail:wxr—ahqks@sohu.tom 维普资讯 http://www.cqvip.com 热带气象学报 23卷 效温度Tp=pl(,pR。))以及众所周知的Ertel DPV的适 当推广p=p-。(2.O+Vxu).Voa,在平衡气流条件下, 把MPV守恒性和可逆性原理延伸到Ooyama’S (NUSMPV)方程。通过对突发性灾害性天气的动力 学分析,王兴荣等(1998)[341指出:突发性灾害性天气 具有激烈和迅速的激发过程和相对平稳和缓慢的发 展过程的特征。随后王兴荣等(1999)[351指出:中纬度 地转偏差激发过程是在NUSMPV趋向于零的条件 下由各种因子的动力不平衡所引发的NUSMPV不 守恒过程。 在上述研究的基础上,本文将探讨不同尺度天 (1990,2001)建立的¨ 1 非流体静力学降水模式中 [151;而根据MPV物质的不可穿越性,Gao等(2002) 指出,MPV异常是跟踪暴雨系统的一个指标【l刚。 在大尺度现象DPV或者MPV研究中,许多学 者(Hoskins和Berridford(1988) ;Keyser和Rotunno (1990) ;Cao和Cho(1995) ;Cho和Cao 气系统转换的机制。 (1998) 。 ;Gao等(2002) )注意到DPV和MPV的 产生和异常【l 刚。在数值模拟中,包括DPV异常处 理的DPV反演技术已被广泛应用于模式初始条件的 改进(Reed et al(1992)) 。 正是因为DPV和MPV在大尺度现象研究中有 如此重要的应用,以致许多研究者企图用DPV或者 MPV异常来研究中尺度现象(Fritsch和Maddox (198 1)t ;Fritsch等1994[ ;Davis和Weisman (1994) ;Skamarock等(1994) ;Gray等(1998)[261)。 虽然有一些关于DPV或者MPV异常产生的研究 (Raymond和Jiang(1990) ;Raymond(1992) ; Shutts和Gray(1994) ;Fulton等(1995)[301),但是, 这些研究,尤其是MPV异常产生的机制,仍然并不 是非常清楚,而且,关于DPV或者MPV异常产生 与不同尺度天气系统转换之间的关系,几乎没有讨 论。 早在1965年,叶笃正等就指出:“大气一般是 准适应的,即准平衡的,但大气中不平衡的偏差则 是经常存在的,它是产生大气运动的动力”。并且 “在天气系统强烈发生时,往往伴有非常强的不平 衡现象(glJ不适应)现象”。因而认为“对于大气不平 衡过程及其形成机制的研究也是个重要问题”[311。 1984年,王兴荣提出(明显的)地转偏差迅速激发和 迅速适应是大气环流调整的原因,而(明显的)地转偏 差产生过程是PV不守恒过程 。此后,王兴荣对 于PV和MPV不守恒过程有关问题作了一系列研究 【3 1 。尤其近几年来,注意到在天气过程中,大气 经常处于非均匀饱和状态,即有的地方饱和,有的 地方不饱和,而以往的湿空气模式一般假定凝结过 程开始于某个临界值,这种假定迫使动力学方程组 中出现不连续的艿函数,从而使得凝结区和非凝结 区边界的动力分析变得异常困难。针对这个缺陷, 王兴荣等(1995[ ,1997[ 刚,1999[411)通过引进连续 的凝结几率函数(q/q。) 来代替6(0,1)函数。在此基 础上,王兴荣等(1998)[331导出了非均匀饱和湿位涡 2基本方程 在无粘滞非均匀饱和大气运动中,按照文献 [39—41】,通过引进连续的凝结几率函数(q/q。) 来代 替8(0,1)函数,可得非均匀饱和热力学方程 c与 一L l( ] 斗 ㈣ 其中k为足够大待确定的常数,基于在适当的 凝结核条件下凝结过程可以在相对湿度为78%时出 现的事实(Mason,1971) ,王兴荣等… 确定k=9, a 是除了潜热释放的非绝热加热,其它均为常用符 号。如果定义广义湿位温  ̄q(ql l (2) 式(1)可表达为 ——=—— ,dO"一:  :a (L3)jJ dt C T 在这儿a定义为除了潜热释放的广义非绝热加热。 使用Cao和Cho(1995) 以及吴国雄等 所采用的 类似推导,对欧拉形式的动量方程 3t+V (4) 求涡度。可得涡度方程 一 一Vx(fx-V )=VpxVa= vpxVa (5) 一其中17为3维风矢,‘p为外作用力的势函数, =V×17+2 )是三维涡度向量。  ̄vo'A乘式(5),借助于式(3),并利用矢量关系 VO’.Vx('2x ̄o)=一V.[VO’×( × )】 (6) VO'x × )= ( .V + (等_Q)(7) 得 (昙 V V ( ・V卵 ×V 。V + ・VQ) (81 维普资讯 http://www.cqvip.com 5期 王兴荣等:与天气系统发生和发展有关的非均匀饱和湿位涡理论分析其 461 其次,用比容仅乘式(8)两边并利用连续方程 中 da一一 . :0 dt 可得NUSMPV方程 = dt= ( ×V )・V ’+ ・VQ P (9 A 其中 + 8 = ・V0 (9a) 需要注意的是:NUSMPV方程与通用的MPV方程 表达形式虽然一致,但NUSMPV方程计算的是广义 湿位温矿而不是相当位温 ,式(9)同样有下列形式 (10) A= Rd p) (1oa) B= ・VQ (10b) eo= .V0 (10c) 注意,在式(10)的推导过程中,使用了状态方程和 :生 fP k/Pod  1一 ,,在式(10)中,A是与斜压性和广 义湿位温梯度有关的力管项;B为非绝热项,P。是 三维涡度向量 ( =VxV+2 )和广义湿位温梯度 向量v 的乘积,我们称之为狭义NUSMPV。在无 粘滞湿绝热大气运动中(VQ=O,B=O),在绝对干区 (q=O,(q/q ) =0,if=o)和饱和湿区(q=q ,(q/q ) =1, 。),A是零,因此NUSMPV是严格守恒的。然 而,在一般不饱和区,也就是绝对干区和饱和湿区 之间的过渡区,A不是零,即NUSMPV是不守恒的。 在次饱和区(0.78<q/q <1.0), 依赖于湿度 ((q/q ) ≠1),NUSMPV是不守恒的。而在其它不饱和 区,因为k足够大而导致(q/q ) =0,所以NUSMPV 是几乎接近守恒的。因此,只有在次饱和区,斜压 性和广义湿位温梯度的力管效应才能够对NUSMPV 的产生起明显作用。这与Cho和Cao(1998)[2 ̄]的数值 模拟得到的结果是一致的。 3不同守恒特征的三类大气运动 根据不同守恒特征可有三类大气运动:当 +B) 0足够小可以忽略时,NUSMPV可以认为是守恒 的;当 +B) 0具有适度的数值,NUSMPV可以认 为是准守恒的;当 +B) 。足够大起主导作用时, NUSMPV可以认为是不守恒的。式(10)的无因次方 程可以表达为 £鲁+ 鲁+ ]+ ( 警)= q(A+B)/Po) (11) 其中£是Kibil数,R是Rossby数。 据为了识别NUSMPV是否守恒,可以使用如下判 倨: 当 。㈣:一 ,。㈢]>。(f-l(A+B)l昂)(12a NUSMPV是守恒的;当 。㈣=一 ,。㈢]=。(f-I(A+B)IPo)(12b NUSMPV是准守恒的;当 。㈣一o(f-l(A+B)lP0)>一 ,。 ](12c NUSMPV是不守恒的。 3.1 NUSMPV守恒运动 大多数观测事实和量纲分析都表明:大气运动 的空问尺度一般与气压梯度力、Corioli力、惯性力 和重力之间平衡的破坏程度有着对应的关系,尺度 越小,破坏程度越大。因此,任何满足式(12a)的具 有空间尺度max[O(R),O(W/fH)l=O(1O )的NUSMPV 守恒大气运动都能看作为具有更大空问尺度max 【O ),O(W/fH)I=O(10 )大气运动的一个扰动。对 于这种运动,目前已有相当成熟的讨论(叶笃正和李 麦村(1965)[311)。这是由于重力波和声波频散而使气 压梯度力、Corioli力、惯性力和重力之间的不平衡 消失的非常快的适应过程。通过这种适应过程,加 上摩擦效应,较小尺度(max[O(R),O(W/fH)l=O(1O")) 大气运动将转换为较大尺度(max[O(R),o(W/fH)】 =0(10 。))大气运动。这种过程一旦产生都将持续进 行,直至大气运动不再满足式(12a)。事实上,从较 小尺度(max[O(R),O(W/fH)l=O(1O ))大气运动转换 为较大尺度(max[O(R),O(W/fH)l=O(1O ))大气运动 是非常快的。 3.2 NUSMPV不守恒运动 因为任一空间尺度max[O(R),O(W/fH)l=O(1O ) 的NUSMPV不守恒大气运动都满足式(12c),故有 。(f-'(A+B)/Po)>一 ,。 ] a) 。㈦ ax ,。 ] 3 o( =0(f (A+B),P0) (13c) 式(13a)是NUSMPV不守恒大气运动出现的充分必 维普资讯 http://www.cqvip.com 462 热带气象学报 23卷 要条件。从式(10c)可以看出,P。主要依赖于因子V 和因子 。在实际大气运动中,无论“A”和“B”是多 么大或者多么小,只要P0的特征值O(P0)足够小可 以满足 而满足下列关系 。(f-'(A+B)/Po) max )’0[鲁))(19) 即直至NUSMPV变成守恒或准守恒时这种过程才 停止。通过这个过程,一个较大尺度大气运动(D(日 =。( 。( ( ))/max ,。 j ) Off (A+B)/P0)>max【D(尺),O(W/fH)]=O(IO ))就被转 那么式(13a)就将满足,NUSMPV不守恒大气运动就 会出现。换句话说,如果不考虑与闪电和雷暴有关 的激烈非绝热电加热,那么,当P。足够逼近于零时, 由 +B)引起的扰动就能激发NUSMPV不守恒大气 运动。正是按照这个条件,通过对突发性灾害性天 气的动力学分析,王兴荣等(1999 )指出突发性灾害 性天气激发过程是在NUSMPV趋向于零的条件下 由各种因子的动力不平衡所引发的NUSMPV不守 恒过程。根据这个条件,王兴荣等还进行了其它一 些应用(2001 ,2002[ ,2003[ )。 就具有某一空间尺度的NUSMPV不守恒大气 运动来说,式(13b)表明:它的时间尺度比起具有同 样空间尺度的一般大气运动要小得多,这是一个快 过程。 式(13c)指出NUSMPV不守恒大气运动的时间 尺度主要依赖于P0的特征值O(P0)和 +B)。 当NUSMPV不守恒大气运动出现时,式(13a) 满足。因此方程(9)和(10)能够被简化为 =o(VpxVoO・Va"+ ・vQ=P,.(A+B)IPo(15) 使用P 和P0表达式(9a)和(10c),式(15)变成为 Po3a_+dt 氅.dt VO・+ .3_VOdt ":A+B (16) 如果不考虑与闪电和雷暴有关的激烈非绝热电加 热,那么有 Of 1<10。 (17) 使用式(14)和式(17),有 =等.V . 一B , 因为NUSMPV不守恒大气运动出现的充分必要条 件是P0的特征值O(P。)足够小,所以式(18)表明 NUSMPV不守恒大气运动是具有足够小特征值 O(P0)的P0突然变大的过程(并不是因为从上游移来 的)。在这个过程中 +BJ改变了涡度场和V ,并因 此改变了P。。作为一个结果,它引起了具有比原有 尺度(max[O(R),O(W/fH)]=O(IO ))更小尺度(max[O (R),O(W/fH)]=O(IO ))的一个扰动。这种过程一旦 产生都将持续进行,直至大气运动不再满足式(13a) 换成较小尺度大气运动(O(e)=max[O(尺),O(W/fH)】 =O(1071"1"Tt1) D(厂 (A+B)/Po)>D(10 )))。我们称这种过程 为激发过程。需要指出的是:在激发过程中,适应 过程也将同时出现,只不过它很小能够被忽略。此 外,在不同纬度,不同尺度系统背景下的NUSMPV 不守恒大气运动的动力和物理特征是不同的。在 1998年,王兴荣等口 使用非均匀饱和湿空气动力学 方程组,讨论了中纬度大尺度系统背景下的 NUSMPV不守恒大气运动的动力和物理特征,指出: 在中纬度大尺度NUSMPV不守恒过程中,主要是非 绝热加热和潜热的垂直不均匀改变了层结状况,从 而改变了NUSMPV,进而改变了散度场并引起了地 转偏差,因此激发了中尺度和小尺度大气运动。至 于其它纬度,其它尺度系统背景下的NUSMPV不守 恒大气运动的动力和物理特征,有待于今后作进一 步的探讨。 3.3 NUSMPV准守恒运动 因为任一空间尺度(max[O(R),O(W/fH)]=O(IO )) 的NUSMPV准守恒大气运动都满足式(12b),故有 D㈣=~ ,D 】 (20a) 叫。(叫剖=。( ( )(20b) O(e)=0(f (A+B)/Po) (20c) 式(20)表明:NUSMPV准守恒大气运动不仅时 间尺度和空间尺度相互有关,而且两者都依赖于 +B)/P0。从式(20b)可以看出, +B)/P0改变是非 常缓慢的,否则,式(20b)不能得到满足而出现 NUSMPV守恒大气运动或者NUSMPV不守恒大气 运动。这意味着NUSMPV准守恒大气运动时间尺度 和空间尺度并不改变或者改变得非常缓慢。因此, 这是 +B)/P0导致NUSMPV准守恒的演变过程。这 是一个慢过程。在这种过程中,不仅 +B)/P0不能 被忽略,而且频散作用和非线性平流作用同样非常 重要。因此,影响NUSMPV准守恒大气运动的过程 主要有3种:(1)由 +B)引起的激发过程;(2)通 过重力波和声波能量频散而使由激发过程引起的扰 维普资讯 http://www.cqvip.com 5期 王兴荣等:与天气系统发生和发展有关的非均匀饱和湿位涡理论分析463 动消失的适应过程(在实际大气运动中还要加上摩 擦和湍流等耗散过程);(3)非线性平流过程。 发阶段),大气运动常常在某种高度范围内从大尺度 向中.小尺度转换,因此,NUSMPV不守恒大气运动 出现条件必定是满足的。所以,一些突发性灾害天 4不同尺度之间天气系统的转换机 气的出现条件和临近预报指标可以(王兴荣等已经 制及其应用 从上面分析可知:由于NUSMPV守恒大气运动 和NUSMPV不守恒大气运动都是快过程,而 NUSMPV准守恒大气运动是一个慢过程。所以大多 数观测到的大气运动的NUSMPV都是准守恒的。因 此,可以假定初始大气运动是NUSMPV准守恒大气 运动,即与NUSMPV改变有关的 + ) 0与初始大 气运动的尺度相对应【见式(12b)】。 如果某种物理现象,比如说水汽通道的切断或 非绝热加热场的突然改变,改变了 + )/P0以致 + ) 。不再与大气运动的尺度相对应,也就是说 式(12b)不再满足,而有 D(£)=一(O(R), 剖>D(f-l(A+B)/P0)(21) 或者 D(£)=。( (A / )>max ),D( )】 2) 那么,根据以上讨论,大气运动的尺度将发生转换。 从3.1节关于NUSMPV守恒大气运动的讨论可 以知道:当 +B)/P0减少,以至满足式(21)的任何尺 度NUSMPV守恒大气运动出现时,一种非常快的适 应过程将出现,通过重力波和声波的能量频散,一 个较小尺度(max[O(R),O(W/fH)]=O(1O ))大气运动 就将变为一个较大尺度(max[O(R),O(W/fH)】 =O(10 ))大气运动,这个过程将持续进行,直至满 足式(12b),即大气运动重新回到准守恒状态。而从 3.2节关于NUSMPV不守恒大气运动的讨论可以知 道:当 +B)IP0增加,以至满足式(22)的任何尺度 NUSMPV不守恒大气运动出现时,一种非常快的激 发过程将出现,通过 + )强迫改变了涡度场和V 改变了狭义NUSMPV,从而引起了具有比原有尺度 (max[O(R),O(W/fH)]=O(IO ))更小尺度(max【O(R), O(W/fH)]=O(1O ))的一个扰动,即一个较大尺度 (max[O(R),O(W/fH)]=O(IO ))大气运动就将变为一 个较小尺度(max[O(R),O(W/fH)]>O(1O ))大气运动, 这个过程将持续进行,直至满足式(12b),即大气运 动重新回到准守恒状态。 按照上述分析,在突发性灾害天气出现初期(激 尝试过并得到了一定成功【4 )通过对湿位涡 (NUSMPV)不守恒过程出现条件的动力学分析来实 现。例如,通过对湿位涡(NUSMPV)不守恒过程出 现条件的讨论,王兴荣等(2006)H 理论上证明了:在 中纬度突发性暴雨产生前,在7tI ̄JL,①必定存在着 深对流高度范围内a , 迅速趋向于零的过程;② 斜压向量沿广义湿位温梯度有一分量,③接近饱和 的不饱和层足够厚,达到深对流高度;④处于含有 大量水汽和液态水的云团和云块附近。1999年合肥 两次(6月15日22:00~24:00,雨量68.5 mm;8月 1日14:00~15:00,雨量80.5 mm)突发性暴雨确实 都有体现上述4个必要条件的2种共同特征现象; ⑤在暴雨生成之前,在合肥上空存在着深厚的双层 干区(在多普勒雷达VWP图上表现为深对流高度范 围内的二层连续无资料区),首先,随着上层干区顶 部的湿冷空气开始下滑,上层干区开始从上到下消 失,接着,当下滑空气停止下滑而开始上升时,下 层的干区开始消失,最后在二层干区完全消失时, 带来突发性暴雨的中尺度对流系统就突然出现。这 是满足突发性暴雨第1必要条件,并使深对流高度 大气层接近饱和(但不能保证不饱和)的一个可能先 兆特征。⑥同时在云图上,南下冷锋云带在逼近合 肥市分裂成二部分,以至在断裂处几乎没有云和雾, 而在周围则存在着含有大量液态水和水汽的二块云 团。而在冷锋云带通过合肥后,带来突发性暴雨的 中尺度对流系统就在几乎没有云和雾的断裂处爆 发。这是满足突发性暴雨第2和第4必要条件,并 使深对流高度大气层处于不饱和状态的另一个可能 先兆特征。两个可能先兆特征合在一起满足突发性 暴雨第3必要条件。 5结论和讨论 在精确导出非均匀饱和湿位涡(NUSMPV)方程 的基础上,首先,按照这方程得到:在无摩擦湿绝 热大气运动中,干区和饱和区之间的不饱和区的 NUSMPV是不守恒的,并进一步证明:只在次饱和 区(0.78<qlq <1),NUSMPV不守恒才是明显的,而 在其它不饱和区,NUSMPV可能是接近守恒的。接 维普资讯 http://www.cqvip.com 热带气象学报 23卷 着,根据守恒的相对性原理,通过NUSMPV无因次 需要指出的是:上述讨论是初步的和基本的, 形式讨论,把大气运动分成三类,即NUSMPV守恒。 为了揭示不同尺度各类大气运动的物理机制和描述 它们的动力和物理特征,还有许多问题需要回答。 就目前情况而言,对于NUSMPV守恒大气运动和适 应过程(与MPV守恒大气运动和适应过程完全相 同),以前已经有了一些成熟的讨论;对于NUSMPV 准守恒和不守恒运动。然后讨论了各类运动的出现 条件,时空之间关系,物理机制和一些特征。最后 分析了不同尺度之间天气系统的转换机制,指出: 当与狭义NUSMPV(Po)有关的涡管项(A)和非绝热加 热项(B)之间的动力不平衡(A+B)/Po减少,以至 NUSMPV守恒条件满足时,大气运动将主要通过非 常快的重力波和声波频散适应过程继续失去不平衡 能量,从较小尺度向较大尺度转换,而当(A+B)/P。 准守恒大气运动和演变过程,虽然一些学者从各种 不同角度进行过许多卓有成效的研究,但是,因为 NUSMPV准守恒大气运动和演变过程与诸多非线性 因子有关,所以许多问题还是相当模糊的,需要作 进一步的研究;对于NUSMPV不守恒大气运动和激 增加,以至NUSMPV不守恒条件满足时,大气运动 将主要通过非常快的由(A+B)改变涡度和V 从而改 变NUSMPV的外源激发过程,而从较大尺度向较小 尺度转换。无论上述两种转换过程那一种,一旦产 生都将持续进行,直至大气运动重新回到NUSMPV 准守恒运动状态。 发过程以及不同尺度之间天气系统的转换机制,其 概念只是近几年来才提出,我们所做的工作主要也 是在理论上讨论它们(虽然也作了一点应用尝试),因 此几乎是一片空白,有待于将来吸引更多有兴趣的 学者作全面而广泛的研究。 参 考 文 献: 【1】叶笃正,李崇银.动力气象学[M】.北京:中国科学出版社,1998:1—126 【2】ERTEL H.Ein neuer hydrodynamischer wirbelsatz[J].Meteorolog Zeitchr Braunschweig.1942,59:271—281 【3】HOSKINS B J,MCINTYRE M E,ROBERTSON R W.On the use and signiifcance of isentropic potential vorticity amps[J】.Quarterly Journal of he tRoyal Meteorological Society.1985,1 1 1:877—946. 【4】BENNETTS D A,HOSKINS B J.Conditional symmetric instability-a possible explnataion for rfontal rainbands[J].Quarterly Journal of he tRoyal Meteorological Society,1979,105:945—962 【5】EMANUEL K A.Inertil ianstability and mesoscale convective systems.Part I:Linear theory of inertil ianstability in rotating viscous fluids[J】. Journal ofthe Atmospheric Sciences,1979,36:2 425-2 449. 【6】ROBINSONWA Analysis ofLIMS databypotential vorticityinversion[J】.Journal oftheAtmospheric Sciences,1988,45:2 319-2 342. 【7】DAVIS C A.A potential vorticity diagnosis of the importance of initial structure and condensational heating in observed extratropical cyclogenesis….Monthly Weather Review,1992,120:2 409-2 428. 【8】HUO Z,ZHANG D L。GYAKUM J R.Interaction of potential vorticity anomalies in extratropical cyclogenesis,part I:Static piecewise inversion[J].Monthly Weather Review,1999,127:2 546-2 561 【9】HAYNES P H,MCINTYRE M E.On the conservation and impermeability theorems for potentil voraticity[J].Journal of the Atmospheric Sciences,1990,47:2 021-2 031. 【10】吴国雄,蔡雅萍,唐晓箐.湿位涡和倾斜涡度发展【J】l气象学报,1995,53(4):387-405. 【11】吴国雄,刘还珠全型垂直涡度倾向方程和倾斜涡度发展【J】_气象学报,1999,57(1):1-15. 【12】吴国雄,刘屹岷.热力适应、过流和副高I.热力适应和过流lJ】大气科学,2000,24(4):433-46. [131 OOYAMA K V A thermodynamic foundation for modeling the moist atmosphere[J].Journal of the Atmospheric Sciences.1990,47:2 580LI 2 593. 【14】 OOYAMA K V A dynamic and thermodynamic foundation for modehng the moist atmosphere wih partameterized microphysics[J]Journal of he tAtmospheric Sciences,2001,58:2 073—2 102. 维普资讯 http://www.cqvip.com 5期 王兴荣等:与天气系统发生和发展有关的非均匀饱和湿位涡理论分析 [15】SCHUBERT W H,SCOTT A H,MATTHEW GARCIA,et a1.Potential Vorticity in a Moist Atmosphere[J】.Journal of the Atmospheric Sciences,2001,58:3 148—3 157 [16】GAO Shouting,LE1 Ting,ZHOU Yushu.Moist potential vorticity anomaly wih heatt and mass forcings in torrentil raain system[J].Chinese Physics Letters,2002,19:878-880. NS B J,BERRIDFORD P.A potentil—avorticity perspective of he tstorm of 15-16 October 1987[J].Weather,1988,43:122-129. [17】 HOSKI[18】 KEYSER D,ROTUNNO R.On the formation of potentila—vorticity anomalies in upper-level jet-front systems[J].Monthly Weather Review, 1990,118:1 914—1 921. ru.Generation of moist potentil voraticity in extratropical cyclones[J].Journal of the Atmospheric Sciences,1995, [19】 CAO Zuohao,CHO Han—52(18):3 263—3 281. n-ru,CAO Zuohao.Generation of moist vorticity in extratropical cyclones.Part II:Sensiitvity to moisture distribution[J].Journal of the [2O】 CHO HaAtmospheric Sciences,1998,55:595—610. NGA M T,KUO Y H.A model aided study ofthe origin and evolution ofthe anomalously high potentil voraticity in the [2l】 REED R J,STOELIinner region of a rapidly deepening marine cyclone[J].Monthly Weather Review,1992,120:893—913 M,MADDOX R A.Convectively drive mesoscale weather system aloft.Part 1:Observations[J].Journal of Applied Meteorology, [22】 FRITSCH J 1981,2O(1):9-19. [23】 FRITSCH J M,MURPHYJ D,KAIN J S.Warm core vo ̄ex ampliifcation over lnd[aJ].Journal of he Attmospheric Sciences,1994,5 1:1 780- 1 807 [24】DAVIS C A,WE1SMAN M L.Balanced dynamics of mesoscale vol"tices in simulatd convecteive systems[J】.Journal of the Atmospheric Sciences,1994,51:2 005—2 030. [25】SKAMAROCK W C,WE1SMAN M L,KLEMP J B.Three-dimensional evolution of simulatede long—lived squall lines[J].Journal of the Atmospheric Sciences,1994,5 1:2 563-2 584. [26】GRAY M E B,SHUTrS G J,CRAIG G C.The role of mass transfer in describing the dynamics of mesoscale convective system[J].Quarterly Journal of he tRoyal Meteorological Society,1998,124:1 183—1 207. [27】 RAYMOND D J,JIANG H.A theory for long—lived mesoscale convective systems[J】.Journal of he Attmospheric Sciences,1990,47:3 067— 3 077. [28】Raymond D J.Nonlinear balance and potentila—vonicity thinking at lrge Rossby number[aJ].Quarterly Journal of the Royal Meteorological Society,1992,118:987-1 015. [29】 SHUTrS G.J,GRAY M E B.A numerical modelling study of the geostrophic adjustment prcesso following deep convection[J].Quarterly Journal of he tRoyal Meteorological Society,1994,120:1 145-1 178. [30】FULTON S R,SCHUBERT W H,HAUSMAN S A.Dynamical adjusmentt of mesoscale convective anvils[J].Monthly Weather Review,1995, 123:3 215.3 226. [31】叶笃正,李麦村.大气运动中的适应问题[M】.北京:科学出版社,1965:1-126 [32】王兴荣.环流调整机制的动力学剖析 .高原气象,1984,3(1):27.35. [33】王兴荣,汪钟兴,石春娥关于大气运动湿位涡不守恒问题 .气象科学,1998,13(2):136.141. [34】王兴荣.从不稳定能量触发机制探讨突发性灾害 .自然灾害学报,1998,7(1):11-15 [35】王兴荣,吴可军,陈晓平,等.突发性灾害天气特征及发生条件的动力学剖析….南京气象学院学报,1999,22(4):711-715. [36】王兴荣,尚瑜,姚叶青,等.副高活动与朔望月之间的联系特征及其动力学解释….热带气象学报,2001,17(4):423428. [37】王兴荣.从“湿位涡不守恒”来研究突发性灾害性天气,特大自然灾害预测的新途径和新方法【M】 香山科学会议第133次学术讨论会文 集北京:中国科学技术出版社,2002:128.131. [38】WANG Xingrong,YAO Yeqing,YU Shang,et a1.Analyses of errors in medium—ertm numerical orfecast products for subtropical high 1998[J]. Journal ofTropical Meteorology 文版),2003,9(1):105-112. [39】王兴荣,吴可军湿空气动力学若干问题的探讨….气象科学,1995,15(1):9-17. [40】王兴荣,石春娥,汪钟兴.非静力平衡条件下的垂直坐标变换及湿空气动力学方程组….大气科学,1997,21(5):557.563. [41】王兴荣,吴可军,等.凝结几率函数的引进和非均匀饱和湿空气动力学方程组 .热带气象学报,1999,15(1):64.70. [42】MASON B J.The physics ofclouds[M].Oxford:Oxford University Press,1971:1-671, [43】王兴荣,郑媛媛,高守亭,等.中纬度突发性暴雨的可能先兆特征 .热带气象学报,2006,22(6):612.617. 维普资讯 http://www.cqvip.com 热带气象学报 23卷 THEORETICAL ANALYSIS OF NON.UNIFORM SATURATED MOIST P0TENTIAL VORTICITY(NUSMPV)ASSOCL ED WITH THE OCCURRENCE AND DEVELOP Ⅱ NT OF WEATHER SYSTEMS WANG Xing—rong , WEI Ming (1.Anhui Research Institute ofMeteorology,Hefei 230061,China; 2.Nanjing Sino—Amedca cooperative remote sensing laboratory;Jiangsu Key Laboratory of Meteorological Disaster Nanjing University of Information Science and Technology,Nanjing 210044,China.) Abstract:At present,in the theory of dyrnamical meteorology,whether it is a 1arge—scalemeso—scale or small-scale atmospheric movement,there are many quite prefect discussions oil the evolution mechanism of .atmospheric motion within a single scale.However.there is 1ittle discussion oil the transformation between weather systems of different scale,even though it is obviously important because it is related to the occurrence and development of weather systems.To discuss the above important transformation mechanism problem,the equation of the frictionless and non—unifclviii saturated moist potentil voraticity fNUSMPV)is derived in this article.First,by mathematica1 and physical analysis of the equation,it is shown that,in moist adiabatic atmospheric motion,the NUSMPV of the motion is not conserved in the unsaturated regions between the dry area and saturated moist area.It is further shown that in the sub—saturated regions (O.78<q/qs<1)the NUSMPV is not conserved;whereas,in the other unsaturated regions,the NUSMPV may be nearly conserved.Second,according to the relativity principle of conservation,by discussing the non—dimensional fonn of the NUSMPV equation.the atmospheric motion is classified into three types: motions with conserved,quasi—conserved,and non.conserved NUSMPV.By mathematical and physical naalysis,the occurrence condition,the relation between space and time,physical mechanism,and some characteristics are studied for each type of motion.Finally,the transformation mechanism betwen the synoptic systems of different scale is analyzed.It is pointed out as follows.Whell the dynamic non—equilibrium degree,which is related to the n ̄rrow sense NUSMPV( )),between he tsolenoidal term(A) nd adiabetic heatng(B),i.ie.(A+B)/P0,decreases so that the condition of NUSMPV conservation is satisfied, he attmospheric motion in NUSMPV conservation state transforms from smaller scale to 1arger scale mainly by the very fast adaptation process in which the non.equilibrium energY is dispersed and lost by gravitational nd sound wave.On tahe contrary,when the(A+B、I/』Jrn increases so that the condiiton of non.conservation is satisfied,the atmospheric motion in the NUSMPV non.conservation state transforillS from larger scale to smaller scale mainly by the very fast excitation process in which he ftA+B1 changes NUSMPV by changing vorticity and V 0‘.Either of the two kinds of transformation process mentioned above will constantly go long tiall the atmospheric motion is back in the state of NUSMPV quasi—conservation. Key words:non—uniform saturated moist potential vorticity;ratnsforlnatiOil mechanism he synoptitc systems of different scale; 

因篇幅问题不能全部显示,请点此查看更多更全内容