MODIFICATONANDRESEARCHONBENDINGRIGIDITY
FORMULAOFREINFORCEDCONCRETEBEAM
AiJun,ChenJue,ZhangLifang,LiuFang
(CollegeofAerospaceEngineering,NUAA,29YudaoStreet,Nanjing,210016,P.R.China)
Abstract:Beamstiffnessdegradeswithitsageinserviceanditsserviceperformanceisweakened.Accordingtothefundamentalcharacteristicsofthereinforcedconcrete,theinfluenceofstiffnessdegradationcausedbydifferentkindsofdamageisobtained.Amongthem,thecrackisthemostdirectandobviousfactor.Furthermore,accordingtotheanalysisofbendingrigidityformulapresentedincurrentstandard,aninfluenceparameterofcrackdevelopmentonthestiffnessdegradation,i.e.,nonuniformitycoefficientoftensilesteelstrain,isextracted.Averagecrackdistanceandcrackdeptharetakenascrackstatisticparameters.BasedonanalysisandmodelingwithANSYS,themodifiedbendingrigidityformularelatedtocrackisobtained.Keywords:reinforcedconcrete;beamandgirders;stiffness;crack;ANSYS
CLCnumber:U446 Documentcode:A ArticleID:1005-1120(2010)04-0299-07
INTRODUCTION
Atpresent,simplediscountedestimationmethodisoftenusedtocharacterizebridgegirderstiffnessinhomeandabroadstandards.Suchmethodsarevalidingeneralbridgedesign,butforservicebridgeassessmenttheyarelimited.Withtheincreasingofserviceages,cracksanddamage,
such
methods
gradually
cannot
characterizetheactualstiffness,andcancauseunnecessaryinterferenceanderrortothebridgeinspection.Soresearchofthemethodthatcanaccuratelycharacterizeactualstiffnessofthebridgebeambythedamageparametersisnecessary.
anddirectlyorindirectlyleadtothedegradationofstructuralstiffness.Amongthem,concretecracksplaythemostdirectandobviousroleinstiffnessdegradation.
Accordingtothebasictheoryofstiffnessanalyticmethod,aformulaofbeamstiffnessinnormalcaseis
EgAgh02
Bs=
1.15+0.2+6n
(1)
[1]
whereEg,Ag,h0,n,areallinvariant,andthosenotkeepinpacewiththechangingofthestructureexternalforce.Nonuniformitycoefficientoftensilesteelstrainistheonlyvariableaboutstructureexternalloads.Thelawofspecificvariationcanbegivenby
=1.11-Mcr
M
(2)
1 INFLUENCEOFDAMAGEON
CROSS-SECTIONSTIFFNESS
Reinforcedconcreteiscompositematerial.Therearethreecommondamagesinusewhichareconcretecracks,concretecorrosionandsteelcorrosion.Theformationmechanismsofthesedamagesarecomplex,diverseanddifferent,butallofthemhaveaninfluenceonbendingrigidity,
whereMcristhecrackingmomentofmember,andMthemomentvalueofcurrentexternalloads.
Eq.(2)showsthenonuniformitycoefficientoftensilesteelstraingraduallybecomeslargerfromzerowiththeincreasingoftheexternalloadaftercrack.AndthevalueofthememberstiffnessBswillalsograduallydegradefromthe
Foundationitem:SupportedbytheCommunicationScientificResearchProjectofJiangsuProvince(06Y21). Receiveddate:2010-03-05;revisionreceiveddate:2010-04-01 E-mail:aijun0822@nuaa.edu.cn300TransactionsofNanjingUniversityofAeronautics&AstronauticsVol.27
topwiththeincreasingofuntilreachingacertainstablevalue.Itshowsarelationshipbetweenthenonuniformitycoefficientoftensilesteelstrainandstiffnessdegradationprocesses.Ontheotherhand,fromalargenumberofexperiments,itcanbeseenthatreinforcedconcretemembershavetwomajorchangesinthestiffnessdegradationprocess,whicharethedevelopmentsofcracksandplasticdeformationofconcrete
compression
zone.
When
the
developmentstendtobestable,
thebeam
stiffnesswillalsoremainrelativelystable.Thisindicatesthatthereisacloserelationshipbetweenthe
plastic
deformationofconcretecompressionzone,andthememberstiffnessBs.Therefore,thenonuniformitycoefficientoftensilesteelstrain,andthedevelopmentsofcracksandplasticdeformationofconcretecompressionzonehaveacloseconnection.
Nonuniformitycoefficientoftensilesteelstraincharacterizestheinfluencedegreeofthetensileconcretebetweenthecracksonthelongitudinaltensionsteelstrain.Afterfirstcrackappeares,thesteelintheun-crackedzoneandconcretestillkeepacertainrelationshipofdeformationcoordinationbecauseofcohesiveactionbetweentheconcreteandthesteel.Butthecapacityoftensileconcretedeformationislimited,sosteelstrainintheun-crackedzoneismuchsmallerthanthatinthecrackedzone.Then,deformationenergycausedbyexternalforcesinthetensilezoneismainlyconsumedbysteelstrain.Withtheloadincreasing,tensileconcretebetweenthecracksgraduallywithdraw.Largestrainappearsintheoriginalun-crackedregionofreinforcedconcreteandnewcracksappear,whichmeansthatthecrackspacingdecreases.Then,moreconcretesareoutofwork,resultingintheincreasingofthecoefficientoftensionsteelstrain.Ontheotherhand,thebeamcurvaturecorrespondinglybecomeslargerwiththefurtherincreasesoftheload.Tipstressofcrackontheactionofbendingtensilestressofitstwo-sidedconcretegraduallyincreases.Indevelopments
of
cracks
and
addition,theproblemsofcracktipstressconcentrationstillexist,whichmakethetipconcreteconstantlyfractureandwithdrawfromworkingandleadtotheincreaseinheightofcrackandnonuniformitycoefficientoftensilesteelstrain.Soitissurethatthereisacloserelationshipbetweentheheightofcrackandnonuniformitycoefficientoftensilesteelstrain,andthedevelopmentofcrackisthemainfactorfor.
Thestructuredestroyedbyconcretecorrosionismainlyconcretecrackingandspalling,soitsinfluenceonthestiffnessdegradationcanbestudiedtogetherwithconcretecracks.
Themaininfluenceofsteelcorrosiononthestiffnessdegradationhasthreeaspects,andtheyaretheweakeningofsteelsections,thedamageofagglutinateforcebetweenconcreteandsteel,andthecrackingcausedbyconcretecorrosion.Thefirstfactorcanbeconsideredbyusingthepracticalreinforcingsteelarea.Thesecondisthemostimportantfactorthatthecorrosioneffectsonstiffnessdegradation.Becausetheinfluenceisrelativelyindependentanddoesnotinterferewitheachother,itcanbesolvedbytheindependentcoefficientofstiffnessdegradation.Thethirdfactorisanindirectinfluenceonstiffnessthroughcrack,soitcanalsobeanalyzedandresearchedtogetherwithcracks[2-8].
Thus,thedamageinfluenceonstiffnessisbasedonthecracks,anditisalsothechiefcontentofthispaper.ScholarsinDalianUniversityofTechnologycarriedoutmanyexperimentsaboutbeamcrackdevelopmentfor
[9-10]
.Inthispaper,indicatingcrackcharacteristics
finiteelementsimulationmethodisusedtofindtherelationshipbetweenbeamstiffnessandcracks.
2 MODELANALYSISOFREINFORCED
CONCRETEBEAM
2.1 Basicideasofmodelanalysis
Thepaperistostudytherelationshipbetweencrackdevelopmentanddegradationofstructuralstiffnessthroughadjustingthecrackingparametersofconcreteunitandcontrollingartificiallythespecificlocationandheightofthecracks.Specifically,concreteunitispermittedtoNo.4AiJun,etal.ModificatonandResearchonBendingRigidityFormulaof…301
thecrackintheareathatisallowedtothecrack,whileinotherareas,itisnotpermittedtothecrack.Thesetwokindsofconcreteunitshavethesameparametervaluesexcepttheoptionsofcracks.Themodelaccordingtothiswayisanartificialidealizedone.Althoughthelargerworkload
of
modeling,
it
can
suppress
interferenceoftheplasticmaterialdevelopmenttothecracks,anditalsocananalyzeanddiscusstheinfluenceof
independently.
different
crack
parameters
isabout50—4cmintheprocessofreinforcedconcretefromcrackingtodestructingcompletely.Therefore,thevaluesofthesetwovariableparametersareamongthesetworanges.Inaddition,thepapermainlyresearchesthestructurerelationshipbetweenthecrackdevelopmentandstiffnessdegradationunderthenormalservicecondition.Anditisgenerallythoughtthataveragecrackheightreachesonlyabout0.5hinthisstate.Sotheselectionofparameterbetween0.1hand0.5hcanbeencrypted.ThespecificvaluesofthevariableparametersareshowninTable2.
InTable2,thevaluesofaveragecrackheighthcraretherelativeheightofsection.ItisthesameinTables3,4.Becauseoftheinfluenceofreinforcementcover,itappearssmallunitof5mmlengthofsideaccordingto0.1hofmodeling,anditisdifficultforthemodeltoconstringe.Sothemodelof0.1hisusedtoreplacethemodelof0.08h.Inordertochecktheaccuracyoftheoreticalanalysis,twobeamsofL-crackandL-non-crackareusedtobecheckedinaddition.Accordingtotheprincipleofreinforcedconcretestructuredesignand\"StrengthEvaluationofExistingConcreteBridge\",theprooftestvalueofmid-spanconcentratedloadofmodelbeamPsis25547.98N.
2.2 ANSYSfiniteelementmodeling
ThebeammodelisanalyzedbyusingANSYS.Solid65andLink8elementisusedtosimulateconcreteandsteel.TheconstitutivelawofconcreteinChinaStandardGBJ0010-2002isadopted.Andbilinearidealelastic-plasticcurveisusedassteelbarconstitutivelaw.
GeometricparametersandmaterialparametersofconcretemodelareshowninTable1andFig.1.
Twocrackparametersofaveragecrackdevelopedheighthcrandaveragecrackspacinglcrarechosentostudy.Atthesametime,accordingtoreference,thevariationrangeofaveragedevelopedheighthcrisabout0.1h—0.8h(histhedepthofsection)andtheveragecrackspacinglcr
Table1 Geometricandmaterialparametersofbeammodel
Geometricparameter
ItemBeamdepthBeamlengthBeambreadthCalculatedlengthofbeam
Parametervalue/mm
2502500
1502300
Materialparameter
Item
ConcretegradeTensilesteelHangerstirrup
Steel
Parametervalue
C20
HRB335(2 12)R235(2 8)R235( 6@150)
Fig.1 Geometricparameterandarrangementofreinforcementofsimulatedbeam302TransactionsofNanjingUniversityofAeronautics&AstronauticsTable2 Valuesoftwovariableparametersandnumbersofsimulatedbeam
4
0.08L4-0.080.20L4-0.200.25L4-0.250.30L4-0.300.35L4-0.350.40L4-0.400.45L4-0.450.50L4-0.500.60L4-0.600.70L4-0.700.80L4-0.80Collationofadditional
beamhcr
50.L5-L5-0.L5-0.0.L5-L5-0.0.L5-L5-0.L5-0.0.L5-L5-0.0.L5-10
0.08L10-L10-0.20L10-0.250.30L10-L10-0.350.40L10-L10-0.45L10-0.500.60L10-L10-0.700.80L10-L-crack
lcr/cm
15L15-0.08L15-0.20L15-0.25L15-0.30L15-0.35L15-0.40L15-0.45L15-0.50L15-0.60L15-0.70L15-0.80
20L20-0.L20-0.L20-0.L20-0.L20-0.L20-0.L20-0.L20-0.L20-0.L20-0.L20-0.
25L25-0.L25-0.L25-0.L25-0.L25-0.L25-0.L25-0.L25-0.L25-0.L25-0.L25-0.
500.L50-L50-0.L50-0.0.L50-L50-0.0.L50-L50-0.L50-0.0.L50-L50-0.0.L50-
Vol.27
08
20253035404550607080082025303540455060708008202530354045506070800820253035404550607080
L-non-crack
Table3 Calculatedresultsofmid-spandeflectionofmodelbeam
hcr0.080.200.250.300.350.400.450.500.600.700.80
4
2.59E-033.26E-033.57E-033.84E-034.12E-034.37E-034.60E-034.78E-034.96E-035.02E-035.02E-03
5
2.56E-033.06E-033.26E-033.48E-033.71E-033.93E-034.07E-034.22E-034.37E-034.40E-034.40E-03
102.45E-032.85E-033.01E-033.18E-033.39E-033.57E-033.69E-033.83E-033.93E-033.95E-033.95E-03L-crack5.09E-03
lcr/cm152.38E-032.70E-032.83E-032.96E-033.15E-033.31E-033.39E-033.51E-033.61E-033.64E-033.64E-03
202.34E-032.59E-032.70E-032.79E-032.94E-033.04E-033.12E-033.19E-033.28E-033.31E-033.31E-03
252.31E-032.52E-032.60E-032.68E-2.80E-2.89E-2.94E-3.01E-3.08E-3.09E-3.10E-0303030303030303
mm
502.27E-032.37E-032.42E-032.46E-032.51E-032.57E-032.60E-032.64E-032.68E-032.69E-032.69E-03
Collationofadditional
beamDeflection
L-non-crack2.25E-03
Table4 Nonuniformitycoefficientoftensilesteelstrainofsimulatedbeam
hcr0.080.200.250.300.350.400.450.500.600.70
40.10940.32550.42590.51370.60580.68550.75970.81830.87600.8961
50.09970.26070.32580.39610.47190.54450.58890.63560.68420.69450.6945
100.06340.19400.24480.29960.36830.42690.46450.51020.54290.55040.5504L-crack0.9197
lcr/cm150.04170.14540.18750.22730.28890.34070.36890.40680.43890.44960.4496
200.02710.10870.14340.17450.22340.25620.28050.30440.33330.34270.3427
250.01930.08610.11200.13790.17680.20500.22380.24450.26780.27240.2733L-non-crack0.0002
500.00440.03840.05270.06560.08310.10230.11230.12530.13850.14180.1418
0.800.8961Collationofadditional
beam
No.4AiJun,etal.ModificatonandResearchonBendingRigidityFormulaof…303
2.3 CalculatedresultsofANSYSfiniteelement ThroughtheANSYSfiniteelementanalysis,wecanobtaincalculatedresultsofmid-spandeflectionineachgroupbeam,asshowninTable3.
Accordingtothegeometricparametersandmaterialparametersofthesimulatedbeam,aswellasEq.(1),wecanobtainthevalueofnonuniformitycoefficientoftensilesteelstrainofthecorrespondingsimulatedbeamthroughmid-spandeflection.ConcreteresultsareshowninTable4.
Table4showsthatwhenthebeamdeformsaccordingtothewayofnaturallycrackingcompletely,thevalueofis0.9197.Basedontheformulasgivenbythespecification.specification=1.1
Mcr
=0.9006M
Fig.2 Scatterdiagramofhcr-ofdifferentcrack
heights
linearcorrelationcoefficientsofthecurveareover0.9946onaverage,andlinearrelativityissky-high.Itshowsthatthevalueofchangeslinearlywiththeincreasingofhcr.Inotherwords,hcrandhavealinearrelationshipandcanbeexpressedby=khcr+C.3.2 Relationshipbetweenaveragecrackspacing
and FromthecalculatedvaluesthroughfiniteelementinTable4,wecanobtainlcr-curveatdifferentcrackheights.Besides,fromtheaboveanalysiswecanseethatthecrackaverageheightsareabout0.5h—0.6hundercheckingload.Sowecanonlypickupsplattersofhcr≤0.5htoanalyzeandfit.ThespecificcurveisshowninFig.3.
Fig.3showsthatdecreaseswiththeincreasingoflcr,butitishardtogettheconcretecurvefromthisfigure.Sothispapermakesaequivalentchange
N=100/lcr
(3)
ThephysicalmeaningofNisaveragequantityofcrackspermeteralongwiththebeam.
ThroughtheequivalentchangeofEq.(3),wecanobtainscatterdiagramofN-,asshowninFig.4.
N-curveshowsthatNobtainslargerwith
.Itsincreasingspeedslowstheincreasingof
downatfirst,andthengoesup,andhasaclearinflectionpointintherangeofN∈(10,20).Thatistosay,N-isatypicalcubiccurve.So,thepaperusescubicpolynomialtofit.Itisdiscoveredthatthefittingdegreeofcurveisover0.9984ontheaverageundercubicpolynomial,andthefittingeffectsareexcellent.Therefore,the Therelativeerrorbetweenthemisonly2.12%.Consideringtheinfluenceofconvergenterrorcausedbynon-linearcalculation,theerrorvaluemeetstherequirementsofthelimitedvalueoferrorcompletely.Atthesametime,italsoshowsthatthesimulateddegreeandsimulatedresultsofthemodelarehigherandbetterinthepaper.
3 DATAANALYSISOFFINITE
ELEMENTANDRIGIDITYMODIFIEDFORMULA
3.1 Relationshipbetweenaveragecrackheight
and
Table4showsthatthecalculatedvaluesofnonuniformitycoefficientoftensilesteelstrainthroughfiniteelement,andwecanobtainhcr-curveindifferentcrackspacingsituations.ThespecificcurveisshowninFig.2.
Fig.2showsthatwhenhcr≤0.5h,thecurveislinear.Andwhenhcr>0.5h,thecurveslopesgently.Especially,whenhcr>0.6h,thevalueofhasbarelychanged.Thatistosay,thecrackaverageheightsareoftenabout0.5h—0.6hundercheckingload.So,wecanpickupthesplatteringofhcr≤0.5h,andlinearlyfitthem.Afterfitting,304TransactionsofNanjingUniversityofAeronautics&AstronauticsVol.27
=C1hcrN3+C2hcrN2+C3hcrN+C4hcr+C5N3+
C6N+C7N+C8
2
(6)
Inordertoobtainthehigherandmorereasonableformula,thepaperusesUDFfunctionsinTableCurve3DsoftwaretofitEqs.(5-6).
Throughfittingandanalyzing,thefittedresultsofthetwoformulasareshowninTable5.
Fig.3 Scatterdiagramoflcr-ofdifferentcrack
heights
Table5 Fittedresultsofabsolutetermandfitteddegree
ofEqs.(4-5)
Parameter
C1
Independentparameterofcoefficientofequation
C2C3C4C5C6C1C2
Correlationparameterofcoefficientofequation
C3C4C5C6C7C8
Fittedresult7.9479603E-3-1.0952218E-43.6316459E-2-1.651516828.232651-21.6789413.3363163E-4-1.494702E-20.23797617-0.1508862-2.1690431E-58.5738818E-4-8.1391593E-3-5.5829987E-3
0.997144870.9962044FitteddegreeR2
Fig.4 ScatterdiagramofN-ofdifferentcrackheights
relationshipbetweenNandcanbecharacterizedbycubicpolynomial,thatis
=a1N3+a2N2+a3N+a4(4)3.3 Fittingtwo-dimensionalformulaand
modifyingrigidityformula
According
totheabovedescription,
nonuniformitycoefficientoftensilesteelstrain
isabinaryfunctionthatisaboutcrackheightandquantityofcracksperunitlength.Ittakeslargevolumesofworkloadandcannotensureaccuratelytouseordinarydataprocessingsoftwaretofitsuchabinaryfunction.Sothepaperusestheautomaticcurvefittingofsoftwaretofit.
three-dimensional
Table5showsthatthefittedeffectsofthetwoformulasaregood,andthediversitiesarenotobvious.Comparatively,Eq.(6)fitsbetter,sothepaperusesEq.(6)asthetheoreticalcalculatedformulaof.
AndbecauseN=100/lcr,Eq.(6)canbewrittenas
=C1hcrlcr-3+C2hcrlcr-2+C3hcrlcr-1+C4hcr+
C5lcr-3+C6lcr-2+C7lcr-1+C8
(7)
wherehcrisrelativeheightofsection,andtheunitoflcriscm.ThevaluesofcoefficientareshowninTable6.
Table6 ValuesofcoefficientinEq.(6)Coefficient
C1
C2C3C4C5
Value333.631631-149.470223.797617-0.1508862-21.6904318.5738818-0.81391593-5.5829987E-3Becauseandhcrarelinearrelationship,andwithNarethecubicfunctionrelationship.IfhcrandNareuncorrelatedindependentvariables,canbeexpressedby
=(C1hcr+C2)(C3N3+C4N2+C5N+C6)
(5)
IfhcrandNarerelatedvariables,canbeexpressedasC6C7C8No.4AiJun,etal.ModificatonandResearchonBendingRigidityFormulaof…305
Eq.(7)isarelationalexpressionofnonuniformitycoefficientoftensilesteelstrainaboutstatisticalparameterofcrackhcrandlcr.Astheabovestated,theinfluenceofcrackonthestiffnessdegradationismainlythroughthe
.So,Eq.(7)isthemeaningofthechangesof
rigiditymodifiedformulaaboutstatisticalparameterofcrack.BytakingcrackparametersinEq.(7),canbecalculated,Then,thedegradationstiffnesscanbecalculatedbyEq.(1).
References:
[1] XiangHaifan.Highertheoryforbridgestructure
[M].Beijing:ChinaCommunicationPress,2001.[2] SunBin,NiuDitao,WangQinglin.Analysisand
calculationofflexuralrigidityofcorrodedreinforcedconcretebeam[J].BuildingStructure,2004,34(10):42-45.[3] ZhaoYuxi,
Teststudyonbond
behaviorofcorrodedsteelbarsandconcrete[J].JournalofZhejiangUniversity:EngineeringScience,
JinWeliang.
4 CONCLUSIONS
Accordingtothefundamentalcharacteristicsofreinforcedconcrete,theinfluenceofstiffnessdegradationcausedbydifferentkindsofinjuriesisobtainedinthepaper.Itisalsoconsideredthattheinfluenceofstiffnessdegradationcausedbycrackisthemostdirectandobvious.Furthermore,accordingtotheanalysisofbendingrigidityformulapresentedincurrentstandard,aninfluenceparameterofcrackdevelopmentonthestiffnessdegradation,nonuniformitycoefficientof
,isextracted.Then,basedtensilesteelstrain
onanalysisandmodelingbyusingANSYS,theinfluenceoflcrandhcronisdiscussed,andthefollowingconclusionsareachieved.
(1)Thereisanobviousrelationshipbetweenandhcr,andgetslargerwiththeincreasingofhcr;
(2)Thereisatypicalrelationshipofcubicfunctionbetweenandhcr,andgetslargerwiththeincreasingofN;
(3)Thereisacertaincorrelationbetweenhcr
andN;
(4)Thetheoreticallycalculatingformulaof,statisticalcrackparametershcrandlcris
obtainedwhichcontributestodegradationstiffness.
2002,36(4):352-356.(inChinese)
[4] ZhangJianren,ChenZhaoquan,WangLei,etal.
Studyonthebendingrigidityofrectangularbeamof
reinforcedconcrete[J].JournalofChina&Foreign
78.Highway,2007,27(3):74-[5] YiMeiying.
Loadbearingcapacityofcorroded
reinforcedconcretebeamsunderrepeatedloading
[D].Shanghai:SchoolofNanvalArchitecture,OceanandCivilEngineering,ShanghaiJiaotongUniversity,2008.
[6] XingJingzhong,LiJun.Nonlinearanalysisof
reinforcedconcretebeambaseonANSYS[J].Coal
Engineering,2006,10:27-29.
[7] HaoWenhua.AppliedexamplesofANSYSincivil
engineeringexamples[M].Beijing:ChinaWaterpowerPress,2005.[8] TrafficStandard.Identificationmethodsofcarrying
capacityoftheoldhighwaybridge(trial)[S].
Beijing:ChinaCommunicationPress,1988.[9] LiXiaoke,Guanjunfeng,Zhaoshunbo,etal.
SimilituderatioandcalculationmethodofcrackofRCbeams[J].JournalofYangtzeRiverScientificResearchInstitute.2010,27(6):62-65.(inChinese)
[10]ZhangLimei,ZhaoShunbo,HuangChengkui.
Experimentalstudyoncrackingwidthandstrengthofprestressedhigh-strengthconcretebeams[J].
BuildingStructure,2004(8):45-48.
钢筋混凝土梁抗弯刚度公式修正及研究
艾 军 陈 珏 张丽芳 刘 芳
(南京航空航天大学航空宇航学院,南京,210016,中国)
摘要:使用过程中梁的刚度会发生退化,从而影响其使用性能。根据钢筋混凝土的基本性能,分析了各种损伤对刚度退化的影响因素,认为裂缝对刚度的影响最为直接也最为明显。进而从数学角度、物理意义角度对现行规范刚度公式进行分析,并提取出裂缝对刚度退化的影响参数——受
基金项目:
拉钢筋应变不均匀系数。选择裂缝平均间距和裂缝开展高
度作为裂缝统计参数,通过ANSYS有限元软件模拟和分析,建立了关于裂缝统计参数的抗弯刚度修正公式。关键词:钢筋混凝土;梁;刚度;裂缝;ANSYS中图分类号:U446
江苏省交通科学研究计划(06Y21)资助项目。
因篇幅问题不能全部显示,请点此查看更多更全内容