您的当前位置:首页二面体群的双凯莱图的匹配可扩性

二面体群的双凯莱图的匹配可扩性

2023-06-16 来源:乌哈旅游
第42卷第5期 201 5年9月 浙江大学学报(理学版) Journal of Zhejiang University(Science Edition) http://www.journals.zju.edu.cn/sci Vo1S.42 No.5 ep.2015 DOI:10.3785/j.issn.1008—9497.2015.05.005 ility of bi-Cayley graphs of dihedral groups GAO Xing ,LYU Huazhong。,WANG Weizhong。 (1.School of Mathematics and Statistics,Key Laboratory of Applied Mathematics and Complex Systems,Lanzhou University,Lanzhou 730000,China;2.School of Mathematics Science,University of Electronic Science and Technology of China,Cbengdu 611731,China;3。Department of Mathematics,Lanzhou Jiaotong University,Lanzhou 730070,China) Abstract:Let G be a finite group and S a nonempty subset(possibly containing the identity element)of G.The bi— Cayley graph BC(G,S)of G with respect to S is defined as the bipartite graph with vertex set G×{0,1)and edge set{(g,O)(sg,1)Ig∈G,s∈S}.A connected graph P admitting a perfect matching is called —extendable whenever P has at least 2n+2 vertices,and every matching of size can be extended to a perfect matching of P.The 2-ex— tendable bi Cayley graphs of dihedral groups are characterized. Key Words:bi—Cayley graph;extendability;dihedral group 高兴 ,吕华众 ,王维忠。(1.兰州大学数学与统计学院应用数学与复杂系统重点实验室,甘肃兰州730000; 2.电子科技大学数学科学学院,四川成都611731;3.兰州交通大学数学系,甘肃兰州730070) 二面体群的双凯莱圈的匹配可扩性.浙江大学学报(理学版),2015,42(5):526—528 摘 要:令G为有限群,s为G的非空有限子集,G关于s的双凯莱图BC(G,s)是一个二部图,其顶点集是G×{0, l},边集是{(g,O)(sg,1)fg∈G,5∈S).若有完美匹配的连通图r至少有2 +2个顶点,且每一个大小为72的匹配 都可以扩充为一个完美匹配,则称此完美匹配的连通图I1是 可扩的,并对二面体群的双凯莱的2一可扩性进行了 刻画. 关键词:双凯莱图;可扩性;二面体群 中图分类号:O157.5 文献标志码:A 文章编号:1008—9497(2015)05—526—03 M share a common vertex.A matching M is perfect 1 Introduction if every vertex of P is covered by an edge of MI The concept of,2一extendable graphs was introduced by Graphs considered are finite and simple.For a PI UMMER[ ]in 1 980 and the relationship between graph r,its vertex set and edge set are denoted by the —extendability and the other graph properties V(r)and E(r),respectively.The minimum was studiedll_ .A connected graph I1 admitting a degree of P is denoted by (I1).The connectivity perfect matching is called 一extendable whenever I1 of F denoted by忌(r),is the minimum size of a has at least 2n+2 vertices,and every matching of size vertex set S such that r\S is disconnected or has can be extended to a perfect matching of r. only one vertex.A graph P is h-connected if its PLUMMER[。]studied the extendability of bipartite connectivity is at least k.A set M of edges of a graphs and CHAN et al[ characterized the graph P is called a matching if no two members of 2-extendable Abelian Cayley graphs. Received date:Feb.9,2O1 5。 Foundation item:Supported by the National Natural Science Foundation of China(11201201),the Natural Science FoundatiOn of Gansu Province(1308RJZA112)and the Fundamental Research Funds for the Central Universities(1zujbky一2015-76). About the author:GAO Xing(1 982一),male,doctor,associate professor,the fields of interest are algebra and algebraic graph theory,E- mail:gaoxing@lzu.edu.cn. 第5期 高兴,等:二面体群的双凯莱图的匹配可扩性 527 Recall that a connected graph P which is edge—transitive need not be vertex—transitive.In this case,P must be bipartite and Aut(r)has two orbits on the vertices forming the bipartition.Such a regular graph is called semi—symmetric.To study semi—symmetric graphs,XU[ ] introduced the concept of the bi—Cayley graphs.Let G be a finite group and S a subset(possibly containing the identity element)of G.The bi—Cayley graph BC(G,S)of G with respect to S is defined as the bipartite graph with vertex set G×{0,1}and edge set{(g,O)( ,1)l g∈G,s E S}.The bi—Cayley graphs are generalization of Cayley graphs. Hamiltonian cycles of the bi—Cayley graphs were characterized in E 6-1 as well as some algebraic properties[ .The extendability of the bi—Cayley graphs of finite Abelian groups was studied in E83.It is natural to study the extendability of the bi-Cayley graphs of non-Abelian groups.Clearly,all connected the bi—Cayley graphs of finite groups are 1-extendable because a regular bipartite graph is l—factorizationE . We characterize 2一extendable bi—Cayley graphs of dihedral groups.The main result is Theorem 1 Let S be a subset of a dihedral group D such that<S>一D .Then BC(D ,S)is 2一extendable if and only if l S l≥3. Readers are referred to ElO]for all terminologies and notations that are not defined in this paper. 2 Proof of the main result In this section,we shall characterize 2一extendable bi-Cayley graphs of dihedral groups. Lemma 1 Every —extendable graph is( 一 1)一extendable and( +1)一connected. Lemma 2 If P is a simple graph,then (I1)≥尼(r). The following results will be used in the paper. Lemma 3 Let G be a group,S a nonempty subset of G and s E S.Then BC(G,1s) BC(G,s S). Proof Define a map ∞ from BC(G,S)to BC(C,s S)by :(g,0)一(g,O), (g,1)一(s g,1), g∈G. Then is a bijection from V(BC(G,S))to (BC(G, S)).T0 show that∞is an isomorphism, let(g1,O)(g2,1)E E(BC(G,S))with g1,g2 E G. Th n (gl,O)(g2,1)E E(BC(G,S))甘g2g1 E S甘 s g2gT E s S甘 (gl,0)(s一 g2,1)E E(BC(G,s S))∞ ((gl,O)) ((g2,1))E E(BC(G,s S)). Hence∞is an isomorphism. In the view of lemma 3。without the lOSS of generality,we may suppose that 1 E S for any bi—Cayley graph BC(G,S)in the following.It is shown in[8]that a bi—Cayley graph BC(G,s)of an Abelian group G is connected if and only if<S> 一G.The next lemma generalizes this result. Lemma 4 Let G be a group and S a nonempty subset of G.Then BC(G,S)is connected if and only if<S>一G. Proof Necessity:If(S>≠G,then(S>is a proper subgroup of G.Let g(S>be a left coset of (S)such that g<S)≠(S),where g∈G.Then there is no edge between the vertices<S>×{O,1} and g(S>×{0,1},which contradicts the fact that BC(G,S)is connected. Sufficiency:It is sufficient to show that there is a path from the vertex(1,0)to any other vertex(g, ),where g E G and i一0 or 1.Since (S>==:G,it implies that g—s1 s2…s for sl,s2,…, s^∈S.If i一1,then (1,O)( ,1)(sk,0)( 一1 Sk,1)(s 一1 ,0)…(sl S2… ,1) is the required path.If i一0,then (1,O)(S )( ,0)( ^一1 S ,1)(S 一l S ,0)… (Sl S2…S^,1)(S1 S2…S ,0) is the required path. Now,we are ready to characterize 2-extendable bi—Cayley graphs of dihedral groups.Let D 一 <n,z l n ===z 一1,z~ 船一a一 )be a dihedral group. Proof of the theorem 1 Necessity:A 2-extendable graph must be 3-connected by lemma 1.This implies that l S l≥3 according to lemma 2,as BC(G,S)is a regular graph with degree l S 1. Sufficiency:Let l S l≥3 and take two edges e1一(g,0)(s1g,1)and e2一( ,0)(s2h,1)in BC(G,S)such that g≠h and s1g≠s2h.If s1一s2 then{(f,O)(51t,1)l E D }is a perfect matching of BC(G,S)containing el and e2.Thus,assume that s1≠s2.To finish the proof of the 2-extendability,since 1∈S,we only need to find 528 浙江大学学报(理学版) 第42卷 an edge set E with small cardinality such that E U{(£,0)(t,1)l t∈D ,(£,0)and( ,1)are not incident to any edge in E}is a perfect matching of BC(G,S)containing e1 and e2.In what follows we construct E.There are three cases to consider. Case 1 s1===口 _z and s2一alx with 0≤i,J≤ 一 1.If h≠a'g and ajxg,take E一{e1,e2,(n xg,0)(g,1),(口 xh,O)( ,1)). If h—aixg or口 xg,take E一{(( 2 s2)mg,0)(sl(s2 s1)mg,1),(sl(s2 51) g,0)× ((s2 s1) g,1}l 0≤m<0(s2 s1)), where o(s2 s1)denotes the order of s2 s1 in D . Case 2 sI一& and s2一aj with 0≤i,J≤ 一1. For a =1,take E一{e1,e2,(ajxh,0)( ,1)).For a ≠1,set El一{e1,(n g,0)(口,。 xg,1), (&J-'xg,O)(n xg,1),(n xg,O)(g,1)}. Note that h≠g and n g≠ajxh.Thus,h≠g and aj ixg.It follows that either e2∈E1 or e2 has no common vertexwithE】.If e2∈E1,takeE—E1,and if e2 E1,take E—E1 U{e2,(ajxh,0)( ,1)). Case 3 51一a and 52一n with 0≤i,J≤ 一1. Since(S>一D ,there exists an involution in S, say ak3c with 0≤k≤ —1.For a 一1,we have a ≠ 1 since 8l≠sz.If h≠akxg and ak-ixg,take E一{e1,(n g,O)(口 一 xg,1), (口 )xg,O)(n xg,1),(n xg,0)(g,1)}, and if h—akxg or ak ̄xg,take E一{((n ) g,O)((n ) g,1)l 0≤m<0(口 )}. For a ≠1,set A一{g,aig,akxg,ak-ixg}, B一{h,d ,akxh,ak-Jxh}, El一{e1,(n g,0)(n ~xg,1),(& xg,O)(以 xg,1), (n xg,0)(g,1)}, E2一{e2,(n ,0)(ak-Jxh,1),(& xh,0)(& xh,1), (n xh,0)( ,1)). Assume that A N B一 .Then take E—El U E2.Thus,assume that A N B≠j2『.In this case, h—alg,akxg,ak ixg,a-Jg,ak Jxg or ak--i--jxg because g≠h,akxg≠akxh and a'g≠ash.If h— a g or ak--i-jxg,take E一{e1,(n g,0)(d+Jg,1),(ai+jg,O)(n xg,1), (“ xg,0)(n xg,1), (口 xg,O)(Ⅱ xg,1),(口 xg,O)(g,1)}. If h—akxg or a jg,take E一{el,(n g,0)(“ xg,1), (口 xg,0)(口 xg,1),(口 xg,0)(n +Jscg,1), (a +Jxg,0)(Ⅱ g,1),(n一 g,0)(g,1)}. If h—ak ixg.take E一{e1,(以 g,0)(n ~xg,1),( xg,0)(。 i+Jxg,1), (口 汁 xg,0)(Ⅱ + xg,1),(a +Jxg,0)(口一 g,1), (口-jg,0)(g,1)}. If h—ak Jxg,take E一{el,(n g,0)(以 + g,1),(以计 g,O)(乜 r xg,1), (& 一 xg,0)(以虹一 xg,1),(n卜 xg,O)(口 xg,1), (a xg,0)(g,1)}. 参考文献(References): [1]PI uMMER M D.On —extendable graphs[=J].Dis— crete Math,1980,31:2O1—21O. [22 PLUMMER M D.Matching extension and the genus of a graph[J].J Combin Theory:Ser B,1988,44:329— 337. [3]PLUMMER M D.Matching extension in bipartite graphs [J].Congr Numer,1986,54:245—258. [4] CHAN 0,CHEN C C,YU Q L.On 2-extendable abe— lian Cayley graphs[J].Discrete Math,1995,146:19—32. E5]xu M Y.Introduction to Finite Groups[M].Beijing: Science Press,1999. -I6] WANG A M,MENG J x.Hamiltonian cycles in bi— Cayley graphs of finite Abelian groups[J ̄.Journal of xinjiang University:Natural Science Edition,2006,23: 156—158. [7] ZOU H,MENG J X.Some algebraic properties of bi Cayley graphs[J].Acta Mathematica Sinica:Chinese Series,2007,50(5):1075 1080. f8]LUO Y F,GAO X.On the extendability of.bi—Cayley graphs of finite Abelian groups[J].Discrete Math, 2009,309:5943—5949. [9]HARARY F.Graph Theory[M].MA:Addison—wes— ley,1969. [1O] WlI SON R J.Introduction to Graph TheOry[M]. New York:Longman Inc,1982. 

因篇幅问题不能全部显示,请点此查看更多更全内容