您的当前位置:首页圆的方程

圆的方程

2020-11-03 来源:乌哈旅游

  教学目标

  (1)把握圆的标准方程,能根据圆心坐标和半径熟练地写出圆的标准方程,也能根据圆的标准方程熟练地写出圆的圆心坐标和半径.

  教学建议

  教材分析

  (2)重点、难点分析

  教学设计示例

  圆的一般方程

  教学目标:

  (1)把握圆的一般方程及其特点.

  (2)能将圆的一般方程转化为圆的标准方程,从而求出圆心和半径.

  (3)能用待定系数法,由已知条件求出圆的一般方程.

  (4)通过本节课学习,进一步把握配方法和待定系数法.

  教学重点:(1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径.

  (2)用待定系数法求圆的方程.

  教学难点:圆的一般方程特点的研究.

  教学用具:计算机.

  教学方法:启发引导法,讨论法.

  教学过程:

  引入

  前边已经学过了圆的标准方程

  把它展开得

  任何圆的方程都可以通过展开化成形如

  ①

  的方程

  问题1

  形如①的方程的曲线是否都是圆?

  师生共同讨论分析:

  假如①表示圆,那么它一定是某个圆的标准方程展开整理得到的.我们把它再写成原来的形式不就可以看出来了吗?运用配方法,得

  ②

  显然②是不是圆方程与 是什么样的数密切相关,具体如下:

  (1)当 时,②表示以 为圆心、以 为半径的圆;

  (2)当 时,②表示一个点 ;

  (3)当 时,②不表示任何曲线.

  总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也不表示.

  圆的一般方程的定义:

  当 时,①表示以 为圆心、以 为半径的圆,

  此时①称作圆的一般方程.

  即称形如 的方程为圆的一般方程.

  问题2圆的一般方程的特点,与圆的标准方程的异同.

  (1) 和 的系数相同,都不为0.

  (2)没有形如 的二次项.

  圆的一般方程与一般的二元二次方程

  ③

  相比较,上述(1)、(2)两个条件仅是③表示圆的必要条件,而不是充分条件或充要条件.

  圆的一般方程与圆的标准方程各有千秋:

  (1)圆的标准方程带有明显的几何的影子,圆心和半径一目了然.

  (2)圆的一般方程表现出明显的代数的形式与结构,更适合方程理论的运用.

  实例分析

  例1:下列方程各表示什么图形.

  (1) ;

  (2) ;

  (3) .

  学生演算并回答

  (1)表示点(0,0);

  (2)配方得 ,表示以 为圆心,3为半径的圆;

  (3)配方得 ,当 、 同时为0时,表示原点(0,0);当 、 不同时为0时,表示以 为圆心, 为半径的圆.

  例2:求过三点 , , 的圆的方程,并求出圆心坐标和半径.

  分析:由于学习了圆的标准方程和圆的一般方程,那么本题既可以用标准方程求解,也可以用一般方程求解.

  解:设圆的方程为

  因为 、 、 三点在圆上,则有

  解得: , ,

  所求圆的方程为

  可化为

  圆心为 ,半径为5.

  请同学们再用标准方程求解,比较两种解法的区别.

  概括总结通过学生讨论,师生共同总结:

  (1)求圆的方程多用待定系数法.其步骤为:由题意设方程(标准方程或一般方程);根据条件列出关于待定系数的方程组;解方程组求出系数,写出方程.

  (2)如何选用圆的标准方程和圆的一般方程.一般地,易求圆心和半径时,选用标准方程;假如给出圆上已知点,可选用一般方程.

  下面再看一个问题:

  例3: 经过点 作圆 的割线,交圆 于 、 两点,求线段 的中点 的轨迹.

  解:圆 的方程可化为 ,其圆心为 ,半径为2.设 是轨迹上任意一点.

  ∵

  ∴

  即

  化简得

  点 在曲线上,并且曲线为圆 内部的一段圆弧.

  练习巩固

  (1)方程 表示的曲线是以 为圆心,4为半径的圆.求 、 、 的值.(结果为4,-6,-3)

  (2)求经过三点 、 、 的圆的方程.

  分析:用圆的一般方程,代入点的坐标,解方程组得圆的方程为 .

  (3)课本第79页练习1,2.

  小结师生共同总结:

  (1)圆的一般方程及其特点.

  (2)用配方法化圆的一般方程为圆的标准方程,求圆心坐标和半径.

  (3)用待定系数法求圆的方程.

  作业课本第82页5,6,7,8.

  板书设计

  圆的一般方程

  圆的一般方程

  例1:

  例2:

  例3:

  练习:

  小结:

  作业:

因篇幅问题不能全部显示,请点此查看更多更全内容