教学目标
1、使学生学会圆环面积的计算方法,以及圆形与矩形混合图形的相关计算方法。
2、学会利用已有的知识,运用数学思想方法,推导出圆环面积计算公式,有关于圆形与正方形应用的解答方法。
3、培养学生观察、分析、推理和概括的能力,发展学生的空间概念。
教学重难点
1、教学重点
会利用圆和其他已学的相关知识解决实际问题。
2、教学难点
圆与其他图形计算公式的混合使用。
教学工具
PPT卡片
教学过程
1、复习巩固上节知识,导入新课
2、新知探究
2、1圆环面积
一、问题引入
同学们知道光盘可以用来做什么吗?谁能来描述一下光盘的外观。
回答(略)。
今天我们就来做一做与光盘相关的数学问题。
二、圆环面积求解
例2、光盘的银色部分是一个圆环,内圆半径是50px,外圆半径是150px。圆环的面积是多少?
步骤:
师:求圆环面积需要先求什么?
生:内圆和外圆的面积
师:同学们可以自己做一做,分组交流一下自己的解法。
师:给出计算过程与结果:
三、知识应用
做一做第2题:
一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?
师:这是一道典型的圆环面积应用题。通过直径得到半径,代入圆环面积公式,很简单。
2、2圆与正方形
一、问题引入
师:同学们知道苏州的园林吧。大家有没有观察过园林建筑的窗户?它有很多很漂亮的设计,也有很多很常见的图形,比如五边形、六边形、八边形等等。其中外圆内方或者外方内圆是一种很常见的设计。
师:不仅是在园林中,事实上在中国的建筑和其他的设计中都经常能见到“外圆内方”和“外方内圆”,比如这座沈阳的方圆大厦、商标等等。下面我们来认识一下这种圆形与正方形结合起来构成的图形。
二、知识点
例3:图中的两个圆半径是1m,你能求出正方形和圆之间部分的面积吗?
步骤:
师:题目中都告诉了我们什么?
生:左图圆的半径=正方形的.边长的一半=1m;右图圆的面积=正方形对角线的一半=1m
师:分别要求的是什么?
生:一个求正方形比圆多的面积,一个求圆比正方形多的面积。
师:应该怎么计算呢?
归纳总结
如果两个圆的半径都是r,结果又是怎样的呢?
当r=1时,与前面的结果完全一致。
四、知识应用
70页做一做:
下图是一面我国唐代外圆内方的铜镜。铜镜的直径是600px。外面的圆与内部的正方形之间的面积是多少?
师:同学们用我们刚刚学过的知识来解答一下这道题目吧。
解:铜镜的半径是300px
5、3随堂练习
若还有足够时间,课堂练习练习十五第5/6/7题。
(可以邀请同学板书解题过程)
6 小结
1、今天我们共同研究了什么?
今天我们在已知圆和正方形的面积公式的前提下,探索了圆环和“外圆内方”“外方内圆”图形的面积计算方法。这不是要求同学们记住这些推导出来的公式,而是希望同学们能过明白推导的方法,以后遇到类似的问题可以自己运用学过的知识来解决问题。
2、在日常生活中经常需要去求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化的吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子、车轮为什么要做成圆形的?大家需要多看多想!
因篇幅问题不能全部显示,请点此查看更多更全内容