教学目标
1、知识与技能:体会公式的发现和推导过程,了解公式的几何背景,理解公式的本质,会应用公式进行简单的计算.
2、过程与方法:通过让学生经历探索完全平方公式的过程,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展推理能力和有条理的表达能力.培养学生的数形结合能力.
3、情感态度价值观:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立学习自信心.
教学重难点
教学重点:
1、对公式的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释.
2、会运用公式进行简单的计算.
教学难点:
1、完全平方公式的推导及其几何解释.
2、完全平方公式的结构特点及其应用.
教学工具
课件
教学过程
一、复习旧知、引入新知
问题1:请说出平方差公式,说说它的结构特点.
问题2:平方差公式是如何推导出来的?
问题3:平方差公式可用来解决什么问题,举例说明.
问题4:想一想、做一做,说出下列各式的结果.
(1)(a+b)2(2)(a-b)2
(此时,教师可让学生分别说说理由,并且不直接给出正确评价,还要继续激发学生的学习兴趣.)
二、创设问题情境、探究新知
一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种.(如图)
(1)四块面积分别为:、;
(2)两种形式表示实验田的总面积:
①整体看:边长为的大正方形,S=;
②部分看:四块面积的和,S=.
总结:通过以上探索你发现了什么?
问题1:通过以上探索学习,同学们应该知道我们提出的问题4正确的结果是什么了吧?
问题2:如果还有同学不认同这个结果,我们再看下面的问题,继续探索.(a+b)2表示的意义是什么?请你用多项式的乘法法则加以验证.
(教学过程中教师要有意识地提到猜想、感觉得到的不一定正确,只有再通过验证才能得出真知,但还是要鼓励学生大胆猜想,发表见解,但要验证)
问题3:你能说说(a+b)2=a2+2ab+b2
这个等式的结构特点吗?用自己的语言叙述.
(结构特点:右边是二项式(两数和)的平方,右边有三项,是两数的平方和加上这两数乘积的二倍)
问题4:你能根据以上等式的结构特点说出(a-b)2等于什么吗?请你再用多项式的乘法法则加以验证.
总结:我们把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2称为完全平方公式.
问题:①这两个公式有何相同点与不同点?②你能用自己的语言叙述这两个公式吗?
语言描述:两数和(或差)的平方等于这两数的平方和加上(或减去)这两数积的2倍.
强化记忆:首平方,尾平方,首尾二倍放中央,和是加来差是减.
三、例题讲解,巩固新知
例1:利用完全平方公式计算
(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2
解:(2x-3)2=(2x)2-2o(2x)o3+32
=4x2-12x+9
(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2
=16x2+40xy+25y2
(mn-a)2=(mn)2-2o(mn)oa+a2
=m2n2-2mna+a2
交流总结:运用完全平方公式计算的一般步骤
(1)确定首、尾,分别平方;
(2)确定中间系数与符号,得到结果.
四、练习巩固
练习1:利用完全平方公式计算
练习2:利用完全平方公式计算
练习3:
(练习可采用多种形式,学生上黑板板演,师生共同评价.也可学生独立完成后,学生互相批改,力求使学生对公式完全掌握,如有学生出现问题,学生、教师应及时帮助.)
五、变式练习
六、畅谈收获,归纳总结
1、本节课我们学习了乘法的完全平方公式.
2、我们在运用公式时,要注意以下几点:
(1)公式中的字母a、b可以是任意代数式;
(2)公式的结果有三项,不要漏项和写错符号;
(3)可能出现①②这样的错误.也不要与平方差公式混在一起.
七、作业设置
因篇幅问题不能全部显示,请点此查看更多更全内容