您的当前位置:首页《圆柱的表面积》教学案例

《圆柱的表面积》教学案例

2021-01-29 来源:乌哈旅游

  圆柱的表面积

  教学内容:教科书第33—34页的例l一例3,完成“做一做”和练习七的第2—5题。

  教学目的:使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。并根据圆柱的表面积与侧面积的关系使学生学会运用所学的知识解决简单的实际问题。

  教具准备:圆柱形的物体,圆柱侧面的展开图

  教学过程;

  一、复习

  1、指名学生说出圆柱的特征。

  2 长方形的面积公式? 学生回答后板书:长方形的面积=长×宽

  二、导入新课

  教师:上节课我们认识了圆柱和圆柱的侧面展开图。请大家想一想,圆柱侧面的展开图是什么图形?

  教师出示上节课实验用的罐头盒,引导学生回忆实验过程:沿着罐头盒的一条高剪开商标纸,再打开,展开在黑板上,得到的是一个长方形。

  教师:这个展开后的长方形与圆柱有什么关系?

  学生:这个长方形的长等于圆柱的周长,长方形的宽等于圆往的高。

  教师:那么,圆柱侧面积应该怎样计算呢?今天我们就来学习有关圆柱的侧面积和表面积的计算。

  三、新课

  1,圆柱的侧面积。

  板书课题:圆柱的侧面积。

  教师:圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

  教师边叙述边摸着圆柱的侧面演示给学生看,指出侧.面的大小就是圆柱的侧面积。

  教师:从上面的实验我们可以看出,这个展开后的长方形的面积和因拄的侧面积有什么关系呢?

  教师出示圆柱的侧面展开图,让学生观察很容易看到这个长方形的面积等于圆柱的例面积。

  教师:那么,圆柱的侧面积应该怎样计算呢?

  引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高

  (板书上面等式:)

  2、教学例1:

  一个圆柱、底面直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数)  

  让学生回答下面的问题:

  (1)这道题已知什么,求什么?

  (2)计算结果要注意什么?

  指定一名学生板演,其他学生在练习本上做。教师行间巡视,注意发现学生计算中的错误,并及时纠正。做完后,集体订正。

  3、小结。

  要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径.底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式:

  4、理解圆柱表面积的含义。

  教师:请大家把上节课自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?

  通过操作,使学生认识到:圆柱的表面由上、下两个底面和侧面组成。

  教师指着圆柱的展开图,“那么,圆柱的表面积是什么?”

  指名学生回答,使大家明确:圆柱的表面.积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  板书:圆柱的表面积=圆柱侧面积十两个底面的面积

  教学例2。

  一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?

  教颊:这道题已知什么?求什么?

  学生:已知圆柱的高和底面半径,求表面积。

  教师:要求圆柱的表面积,应该先求什么?·后求什么?

  使学生明白:要先求圆柱侧面积和底面积,后求表面积。

  教师:我们可以根据已知条件画出这个圆柱。随后教师出示圆柱模型,将数据标在图上。

  教师:现在我们把这个圆柱展开。出示展开图。

  让学生观察展开图,“在这个图中,长方形的长等于多少?宽等于多少:圆柱的侧面积怎样计算?圆柱的底面积应该怎样求?”

  指名学生回答,注意要使学生弄清每一步计算运用什么公式(如圆的周长公式和面积公式,长方形的面积公式,等等)。

  然后指定一名学生在黑板上板演,其他学生在练习本上做。教师行间巡视,注意察看学生计算结果的计量单位是否正确。

  做完后,集体订正。

  6、教学例3。

  ,一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。)

  教师:这道题已知什么?求什么?

  学生:己知圆柱形水桶的高是24厘米,底面直径是20厘米。求做这个水桶要用多少铁皮。

  教师:这个水桶是没有盖的,说明了什么?如果把做这个水桶的铁皮展开,会有哪几部分?

  使学生明白:水桶没有盖,说明它只有一个底面。

  教师:要计算做这个水桶需要多少铁皮,应该分哪几步?

  指名学生回答后,指定两名学生板演,其他学生独立进行计算。教师行间巡视,注意察看最后的得数是否计算正确。

  做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取舍的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五人法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近似值的方法叫做进一法。

  7、小结。

  在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。

  四、巩固练习

  1、做“做一做”的第1题。

  教师:这道题已知什么?应该怎样求侧面积?

  使学生明白可以直接用底面周长乘以高就可以得到侧面积。

  让学生做在练习本上,做完后集体订正。

  2、做一做的第2题。

  让学生独立做在练习本上,教师行间巡视,做完后集体订正。

  五、作业

  1、完成第练习七的第2~~5题。

  (1)第2、3题,是分别求圆柱的例面积和表面积,要求学生正确选用公式,认真仔细地计算。

  (2)第4题,圆柱形沼气池·的形状和特点要向学生说明(特别是城市里的小学生),把它转化为数学问题,要弄清求的是圆柱哪些部分的面积。

  (3)第5题,是先实际测量,再计算的题目,可以分组进行测量和计算,每组要量的茶叶筒的大小可以是不一样的。

  2、让学有余力的学生做练习十的第6、7题。

  第6·题.是已知圆柱的侧面积和底面半径,求圆柱的高。这样就要把求圆柱的侧面积的运算顺序颠倒过来。教师可以提示学生列方程解答。

  第7题,是求一个没有盖的圆柱形铁皮水桶的用料:s=πr十2πh≈63.59 十  339.12=402.71≈410(平方分米)

因篇幅问题不能全部显示,请点此查看更多更全内容