教学目标
(一)理解小数除法的意义,掌握除数是整数的小数除法的计算方法。
(二)通过对算理的理解,培养逻辑思维能力,提高计算能力。
教学重点和难点
重点:理解并掌握除数是整数的小数除法的计算方法。
难点:掌握整数除以整数不能整除时,在被除数的个位数的右边点上小数点,再在被除数的后面添上“0”继续除,直到除尽为止。
教学过程设计
(一)复习准备
1.填空:
(1)0.32里面含有32个( );
(2)1.2里面含有12个( );
(3)0.25里面含有( )个百分之一;
(4)2.4里面含有( )个十分之一;
(5)8里面含有( )个十分之一;
(6)0.15里面有( )个千分之一。
2.列竖式计算:
把2145平均分成15份,每份是多少?
2145÷15=143
3.复习整数除法的意义。
(1)一筒奶粉500克,3筒奶粉多少克?
(2)3筒奶粉1500克,1筒奶粉多少克?
(3)1筒奶粉500克,几筒奶粉1500克?
学生列式计算:
(1)500×3=1500(克);
(2)1500÷3=500(克);
(3)1500÷500=3(筒)。
比较两个除法算式与乘法算式的关系,说出整数除法的意义:
已知两个因数的积与其中的一个因数,求另一个因数的运算。
(二)学习新课
1.理解小数除法的意义。
将上面三题中的单位名称“克”改为“千克”:
(1)1筒奶粉0.5千克,3筒奶粉多少千克?
(2)3筒奶粉1.5千克,1筒奶粉多少千克?
(3)1筒奶粉0.5千克,几筒奶粉1.5千克?
学生列式计算:
(1)0.5×3=1.5(千克);
(2)1.5÷3=0.5(千克);
(3)1.5÷0.5=3(筒)。
观察思考:两个除法算式与乘法算式有什么关系?除法算式的意义是什么?
讨论后得出:小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算。
练习:P14“做一做”。
2.研究除数是整数的小数除法的计算方法。
(1)学习例1:
服装小组用21.45米布做了15件短袖衫,平均每件用布多少米?
①学生列式:21.45÷15=
②学生观察这个算式与以前学习的除法有什么不同?(被除数是小数。)
③引出问题:被除数是小数,其中的小数点应如何处理呢?
④学生试做。
⑤学生讲算理。
针对错例,讨论分析原因;针对正确的重点讲清以下几点:
21除15商1余6,余下的6除以15,不够除怎么办?(把6个一化成低一级单位表示的数,即60个十分之一,再和下一位上原有的4个十分之一合在一起,是64个十分之一,继续除。)
除到十分位余4怎么办?(把十分位上的4化成40个百分之一,并与被除数中原来百分位上的数5合在一起,是45个百分之一,继续除下去。)
商的小数点如何确定?为什么?(当除到十分位,用64个十分之一除以15,商的4表示4个十分之一,应写在十分位上,所以在个位1的右边点上小数点)
(2)练习:P15“做一做”。
68.8÷4= 85.44÷16=
因篇幅问题不能全部显示,请点此查看更多更全内容