您的当前位置:首页武夷山三中2013-2014学年九年级上期中考试数学试卷

武夷山三中2013-2014学年九年级上期中考试数学试卷

2024-03-14 来源:乌哈旅游
---线----------------------------- 武夷山三中13~14学年第一学期期中考试九年级

数 学 试 卷

(考试时间:120分钟 卷面满分:150分)

: -号----座--- -题- -- -- - -- -答- - - - - 订 - 准-- - - - - -:- -不---- -姓名 -- - - 内-- -- - -- 线装 -- - - --: - -订-级--- - -- - 班 - 装---- - - - - 封封-- - - - - - 密---- -- - -- -- -- -:----校密学---------------------------题 号 一 二 三 1~10 11~18 19 20 21 22 23 24 25 26 总 分 得 分 评卷人

得 分 一、选择题:(每小题4分,共40分)

1.若式子x3在实数范围内有意义,则x的取值范围是( )

A. x>3 B.x≥3 C.x<3 D.x≤3

2.下面的图形中,既是轴对称图形又是中心对称图形的是( )

A.. B. C. D.

3.如图,AB是⊙O的弦,OC⊥AB于点C,若AB=8cm,OC=3cm, A C 则⊙O的半径为( )

B O A.3 cm B.5 cm C.6 cm D.10 cm

4.下列二次根式中,属于最简二次根式的是 ( ) (第3题)

A 12x; B 8;

C x2; D x21

5.如图所示,将正方形图案绕中心旋转180°后,得到的图案是( )

第1页(共5页)

6.下列运算中正确的是( )

A、2323 B、633 C、2733 D、32427

第2页(共5页)

7.方程x24x50经过配方后,其结果正确的是( )

A.(x2)21 B.(x2)21 C.(x2)29 D.(x2)29 8.某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为,则可列方程为( ). A、

B、

C、

D、

9.若关于x的一元二次方程kx22x10有两个不相等的实数根,则k的取值范围是( )

A.k1 B。 k1且k0 C.。k1 D。k1且k0 10.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点 沿纸箱爬到B点,那么它所行的最短路线的长是( ) A.9 B.10 C.42 D.217 评卷人 得 分 A B

二、填空题:(每小题3分,共24分)

11.计算:23 .

12.方程(x1)(x5)0的根是 .

13. 如图,A、B、C是⊙O上的三点,已知∠O=60°,则∠C= 。 14.方程3x27x3的一般形式是 . 15.坐标平面内点P(m,2)与点Q(3,FADEBC(第17题图)关2于原点对称,则

m=___________________。 16.已知:a<2,则

a22= . 17.如图,已知正方形ABCD的边长为3,E为CD上一点,DE=1,以点A为中心,

把△ADE顺时针旋转90°,得△ABF,连接EF,则EF的长为________________。

18.摄影兴趣小组的学生,将自己拍摄的照片向本组其他成员各赠送一张,全组

共互赠了182张,若全组有x名学生,则根据题意列出的方程是________________。

评卷人 得 分

三、解答题:(共86分)

19.(本题18分)计算

(1) 385018 (2)(35)(25)

1(3)12()1(21)0(1)2013.

220.(本题12分)用适当的方法解方程

(1)x2-2x-1=0 (2)3x(x2)5(x2) 21.(10分) 如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、

B(﹣3,1)、C(﹣1,3). (1)请按下列要求画图:

①将△ABC先向右平移4个单位长度、再向上平移2个 单位长度,得到△A1B1C1,画出△A1B1C1;

②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2. (2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.

22.(8分) 已知关于x的一元二次方程 (m1)x26xm210的一个根是0, (1)求m的值。 (2)求方程的另一根

23.(7分)如图所示,AB是⊙O的一条弦,ODAB,垂足为C, 交⊙O于点D,点E在⊙O上。

(1)若AOD52,求DEB的度数; (2)若OC3,OA5,求AB的长。

A O C D B E

---------------------------密-------------------------24.(本题9分)如图,⊙O的直径AB为10cm,弦AC为6cm, ∠ACB的平分线交⊙O于D,求BC、AD、BD的长

DAOBC 25.(10分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商密 场平均每天可多售出2件,设每件商品降价x元,据此规律,请回答: (1)商场日销售量增加_______________件,每件商品盈利_________________元(用含x的代数式表示);

(2)在上述条件不变,销售正常的情况下,每件商品降价多少元时,商场日盈利可达2100元?

26.(12分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD。 (1)求证:△COD是等边三角形;

(2)当α=150°时,试判断△AOD的形状,并说明理由; (3)探究:当α为多少度时,△AOD是等腰三角形?

A

D 110°O α BC

封 装 订 线 内 不 准 答 题 封-------------------------装--------------------------订--------------------------线-----------------------------

因篇幅问题不能全部显示,请点此查看更多更全内容