您的当前位置:首页焦耳

焦耳

2020-03-20 来源:乌哈旅游
◇焦耳◇

焦耳出身在一个酿酒商家庭,从小就跟着爸爸酿酒,没有进过学校,但小焦耳勤奋好学,一边劳动一边认字,后来有幸还认识了著名化学家道尔顿。

焦耳虽然在酿酒厂里当技师,却把注意力放在工作之余从事的科学实验上。他把父亲的一间房子要来改成了实验室,开始了对电学以至热学的研究。

几年以后,经过连续多次实验,焦耳终于找到了电与热的规律--焦耳定律,并发表了论文。焦耳的论文发表以后,并没有引起学术界的重视。因为焦耳只是个酿酒技师,没有名牌大学的文凭;更因为相当多的学者不相信电与热的关系竟是那么简单。

科学就是真理,科学从来不需要取悦于权力,因为世界上只有真理最有力量。焦耳继续着他的实验,坚持着他的观点。

一年后,俄国科学家、彼德堡科学院院士楞次重复了焦耳的实验,测量的结果和焦耳的一致,无疑这对焦耳是一个有力的支持,后来人们把这个定律叫做焦耳-楞次定律。尽管如此,英国皇家学会还是不承认。

有一次,在牛津的一次科学会议上,当焦耳在宣读热和功的论文中再一次谈到他的实验和定律时,大会主持人居然横加干涉,要焦耳少讲一点自己的实验。这种粗暴的态度激怒了一些正直的科学家。其中一位叫汤姆的青年科学家,挺身而出,为焦耳辩护。

经过时间和历史的考验,焦耳-楞次定律早已赢得了科学家们

的认可。

◇安培◇

追着马车做题的人

安培还在童年时,他就显出了很好的数学才能,12岁时便拜著名数学家拉格朗日为老师,13岁时就发表了数学论文。

安培的可贵之处,在于他善于思索。有一次,他在街上边走边思考,突然想出了一个电学算式,急着想把式子列出来,正巧前面停着一辆马车,就把马车的车箱当黑板了,马车走他也走,马车越走越快,直到追不上马车时,他才停下来,这时街上许多人都已经被他的这种失常行为笑得前仰后合了。

1820年奥斯特发表了关于电流磁效应的报告,这引起了法国学术界的震动。安培听了奥斯特的实验细节的报告后,第二天就重复了奥斯特的实验,并且发现了电流的方向和它的磁场的方向有着一定的规律,可以用右手来表示它们之间的关系,这就是安培定则或右手螺旋定则。

安培进一步想,既然电流周围产生了磁作用,假如把两根通电导线放在一起,那么这两股电流各自产生的磁场也会相互施加作用力。安培设计了这样的实验,证实了它们之间存在着相互作用,并且推算出了这种力所遵循的数学公式,于是一条完整的定律便诞生了,这就是安培定律。

安培又进一步想,假如把直导线绕成螺旋形,那么磁场就会因为更密集而得到加强。他做了这样的线圈(即螺线管),果然显示了较强的磁性;同时他又用右手判断了螺线管的磁场方向。

他又进一步想:既然通电的线圈类似一只磁铁,反过来,一个天然磁体不是也像一只通电线圈吗?那么,天然磁铁上的电流在哪里?安培注意到这样一个事实,那就是把一条形磁体折为两段,结果变成了两个独立的磁体,照此分下去,天然磁体的每一颗粉末也都是独立的磁体,都有N极和S极。

安培便这样想:在原子、分子或分子团等物质微粒内部,存在着一种环形电流--分子电流(后人也叫它‚安培电流‛),分子电流使每个物质微粒都形成了一个微小的磁体,环性的分子电流的磁场使它的两侧相当于两个磁极。这两个磁极是跟分子电流不可分割地联系在一起的。未磁化的物体分子电流的方向非常紊乱,对外不显示磁性。磁化后,分子电流的方向变得大致相同,于是对外显示出磁作用。

安培的假说提示了磁现象的电本质。后人评价安培说:‚安培所做的研究,属于科学曾经作过的最卓越的工作之列。‛‚安培是电学领域里的牛顿。‛

◇法拉第◇

法拉第出生在一个十分贫穷的铁匠家,他爸爸实在是太穷了,小法拉第是饥一餐饱一顿地长大的。他后来回忆说,有时候爸爸妈妈一个星期只给他一个面包吃。

穷成这个样子,法拉第当然没上过学。他从小就去当听差,当报童,13岁时便到一家书店里当了学徒。那个时代书刊和报纸是奢侈品,小法拉第专门为订户送报,送完一户跑一户。后来他开始学装订,并且在装订之余去看书。

有一次法拉第装订一本书,书名叫《关于化学的对话》。他看这本书入了迷,用仅有的钱买了药品,按照书里的话做起实验来,从此他对科学产生了浓厚的兴趣。

法拉第读的书越来越多,于是他用废纸订成笔记本,摘录各种资料,有时还在笔记中配上插图。他从《大英百科全书》里学到了许多电学知识。

后来,法拉第去听著名科学家戴维的科普报告,便把笔记本呈送给了戴维。经戴维推荐,法拉第成了英国皇家学会实验室的助理,从此法拉第走上了科学研究的道路。

当时科学家们相信:电流既然可以产生磁场,那么磁也应该能够生电,但是,戴维和法拉第研究了10年,都没有找到用磁生电的办法。虽然这样,法拉第仍然不灰心,他有信心在磁生电上取得突破。

1831年8月,法拉第做了一个新的装臵。他在一个直径为6英寸的铁环的半边,用铜丝绕成线圈,接上电流计;在铁环的另一半也绕了一组线圈,然后接到电源上。

‚合闸!‛法拉第亲眼看到那电流表的指针摆动了。可是,他

再定眼一看,那电流表的指针又指向了零,这是为什么呢?法拉第决定断开电源再重新做一下实验,谁知,在断开电源时,指针又摆动了,但是这一次的方向与上次相反。法拉第总想让第二个线圈产生持续的电流,可是实验的结果总是只有合闸和断电的一瞬才能‚感生‛出电流来。

法拉第不但善于实验,更善于思考。他想,使电流感生出来的应该是一个运动着的磁场。于是,他把一块条形磁铁插进空心线圈,电流计上的指针摆动了,磁终于产生电啦。

法拉第成名以后,世界各国赠给他的荣誉头衔有94个,但是他说:‚我承认这些荣誉很有价值,不过我从来没有为追求这些荣誉而工作。‛‚科学家不应是个人的崇拜者,而应当是事物的崇拜者。真理的探求应是他唯一的目标。‛

◇瓦特◇

瓦特出生于英国的格林诺克,由于家境贫穷没机会上学,先是到一家钟表店当学徒,后又到格拉斯哥大学去当仪器修理工,瓦特聪明好学,他常抽空旁听教授们讲课,再加上他整日亲手摆弄那些仪器,学识也就积累的不浅了。

1764年,格拉斯哥大学收到一台要求修理的纽可门蒸汽机,任务交给了瓦特。瓦特将它修好后,看看他工作那么吃力,就象一个老人在喘气,颠颠颤颤地负重行走,觉得实在应该将它改进一下。

他注意到毛病主要是缸体随着蒸汽每次热了又冷,冷了又热,

白白浪费了许多热量。能不能让它一直保持不冷而活塞又照常工作呢?于是他自己出钱租了一个地窖,收集了几台报废的蒸汽机,决心要造出一台新式机器来。

从此,瓦特整日摆弄这些机器,两年后,总算弄出个新机样子。可是点火一试,那汽缸到处漏气,瓦特想尽办法,用毡子包,用油布裹,几个月过去了,还是治不了这个毛病。

一天他又趴到汽缸前观察漏气的原因,不小心一股热气冲出,他急忙躲闪,右肩上已是红肿一片,就像被一把热刀削过一样,辣辣地疼起来,弄得他心烦意乱。他真有些灰心了,这时,是他的妻子给了他勇气,妻子用激将法又激起了继续研究下去的雄心。

他又回到地下实验室,将过去的资料重新翻阅一番,打起精神又干了起来,干累了就守着炉子烧一壶水喝茶。一天,他一边喝茶,一边看着那一动一动的壶盖。他看看炉子上的壶又看看手中的杯子,突然灵感来了:茶水要凉,倒在杯里;蒸汽要冷,何不也把它从汽缸里也‚倒‛出来呢?

这样想着,瓦特立即设计了一个和汽缸分开的冷凝器,这下热效率提高了三倍,用的煤只有原来的四分之一。这关键的地方一突破,瓦特顿然觉得前程光明。他又到大学里向布莱克教授请教了一些理论问题,教授又介绍他认识了发明镗床的威尔金技师,这位技师立即用镗炮筒的方法制了汽缸和活塞,解决了那个最头疼的漏气问题。

1784年,瓦特的蒸汽机已装上曲轴、飞轮,活塞可以靠从两边进来的蒸汽连续推动,再不用人力去调节活门,世界上第一台真正

的蒸汽机诞生了。

爱因斯坦的冰箱

作者:不详 发布时间:2006-07-03 10:32 阅读次数: 1724 次 来自:不详

众所周知,爱因斯坦是‚相对论‛的鼻祖,但大家也许并不知道,这位伟大的理论科学家还曾经同另一位科学家一起,发明过几款独特的电冰箱呢!爱因斯坦出生于一个商人家庭,他从小就知道要赚钱养家,因为家里人都希望他能够接管家族生意。爱因斯坦发明了冰箱后,尽管还申请了技术专利,但高技术的日新月异意味着他的发明永远都不会被投产,而且,此后惟一一台冰箱原型也没有保留下来。直到最近,对一些当年的设计图纸的研究,才使得我们得以重温那段历史,认识到别样的一个爱因斯坦。

设计‚环保‛电冰箱

上个世纪二十年代的一天,爱因斯坦从报上读到,有一家老小被电冰箱压缩机泄露出来的有毒气体毒死在床上。那时,这种偶然事故带来的危害越来越多,机械式家用电冰箱正开始取代传统的冰箱。然而,当时化学上尚未产生出一种无毒的致冷剂。当时通常使用的三种致冷气体——甲基氯、氨和二氧化硫全都有毒,一台电冰箱内的毒物完全可以致人死命。

这则惨剧使爱因斯坦悲恸难已。他觉得,必须有一种更好的替代办法,问题并非只是致冷剂。对于带有运动机件的系统来说,轴承和密封垫等地方出现这种泄露几乎是不可避免的。根据他掌握的热力学知识,可以用多种方法致冷,而无须机械运动。那么,为何不用这

些方法试试呢?

爱因斯坦决心试一试。1925年,他和一个叫希拉德的科学家合作设计新型电冰箱,并和那个人签定了专利费的分配方法。

多种设计方案

当时的冰箱和现在类似,大多数电冰箱都使用了压缩机。致冷气体经过压缩以后,随着过多的热量向周围环境释放,就会变成液态,当这种液体在条件许可的情况下再次膨胀时,它便开始冷却,并吸收内室中的热量,达到制冷的目的。在吸收式电冰箱中,由来自天然气火焰的热量,而不是活塞的推动驱动着致冷循环。爱因斯坦和希拉德认为,应该在这种吸收式电冰箱上采用一种更安全的设计。

但两位雄心勃勃的创业者并没有停留在这一种设计上,而是提出了多种设计,爱因斯坦作为专利审查员的经历使得他们没有代理人也能够处理专利问题。1926年初,希拉德就开始提出一系列的专利权申请。当年秋天,他们就已经对三种最有希望的设计申请了专利。

非常有趣,两位大师的三种电冰箱分别应用了完全不同的物理学原理——吸收、扩散或者电磁。这三种电冰箱和当时已知的其它任何一种电冰箱都完全不同。希拉德很快便与一家公司商定了一项合同。1927年末,一家瑞典公司以3150德国马克的价格从两位发明家手中买下了其中一种吸收式电冰箱的专利申请权。

(2004-02-06)

开尔文是英国著名物理学家、发明家,原名W.汤姆孙。他是本世纪的最伟大的人物之一,是一个伟大的数学物理学家兼电学家。他被看作英帝国的第一位物理学家,同时受到世界其他国家的赞赏。他的一生获得了一切可能给予的荣誉。而他也无愧于这一切,这是他在漫长的一生中所作的实际努力而获得的。这些努力使他不仅有了名望和财富,而且赢得了广泛的声誉。

1824年6月26日开尔文生于爱尔兰的贝尔法斯特。他从小聪慧好学,10岁时就进格拉斯哥大学预科学习。17岁时,曾立志:‚科学领路到哪里,就在哪里攀登不息‛。1845年毕业于剑桥大学,在大学学习期间曾获兰格勒奖金第二名,史密斯奖金第一名。毕业后他赴巴黎跟随物理学家和化学家V.勒尼奥从事实验工作一年,1846年受聘为格拉斯哥大学自然哲学(物理学当时的别名)教授,任职达53年之久。由于装设第一条大西洋海底电缆有功,英政府于1866年封他为爵士,并于1892年晋升为开尔文勋爵,开尔文这个名字就是从此开始的。1890~1895年任伦敦皇家学会会长。1877年被选为法国科学院院士。1904年任格拉斯哥大学校长,直到1907年12月17日在苏格兰的内瑟霍尔逝世为止。

开尔文研究范围广泛,在热学、电磁学、流体力学、光学、地球物理、数学、工程应用等方面都做出了贡献。他一生发表论文多达600余篇,取得70种发明专利,他在当时科学界享有极高的名望,受到英国本国和欧美各国科学家、科学团体的推崇。他在热学、电磁学及它们的工程应用方面的研究最为出色。

开尔文是热力学的主要奠基人之一,在热力学的发展中作出了一系列的重大贡献。他根据盖-吕萨克、卡诺和克拉珀龙的理论于1848

年创立了热力学温标。他指出:‚这个温标的特点是它完全不依赖于任何特殊物质的物理性质。‛这是现代科学上的标准温标。他是热力学第二定律的两个主要奠基人之一(另一个是克劳修斯),1851年他提出热力学第二定律:‚不可能从单一热源吸热使之完全变为有用功而不产生其他影响。‛这是公认的热力学第二定律的标准说法。并且指出,如果此定律不成立,就必须承认可以有一种永动机,它借助于使海水或土壤冷却而无限制地得到机械功,即所谓的第二种永动机。他从热力学第二定律断言,能量耗散是普遍的趋势。1852年他与焦耳合作进一步研究气体的内能,对焦耳气体自由膨胀实验作了改进,进行气体膨胀的多孔塞实验,发现了焦耳-汤姆孙效应,即气体经多孔塞绝热膨胀后所引起的温度的变化现象。这一发现成为获得低温的主要方法之一,广泛地应用到低温技术中。1856年他从理论研究上预言了一种新的温差电效应,即当电流在温度不均匀的导体中流过时,导体除产生不可逆的焦耳热之外,还要吸收或放出一定的热量(称为汤姆孙热)。这一现象后叫汤姆孙效应。

在电学方面,汤姆孙以极高明的技巧研究过各种不同类型的问题,从静电学到瞬变电流。他揭示了傅里叶热传导理论和势理论之间的相似性,讨论了法拉第关于电作用传播的概念,分析了振荡电路及由此产生的交变电流。他的文章影响了麦克斯韦,后者向他请教,希望能和他研究同一课题,并给了他极高的赞誉。

开尔文在电磁学理论和工程应用上研究成果卓著。1848年他发明了电像法,这是计算一定形状导体电荷分布所产生的静电场问题的有效方法。他深人研究了莱顿瓶的放电振荡特性,于1853年发表了《莱顿瓶的振荡放电》的论文,推算了振荡的频率,为电磁振荡理论研究作出了开拓性的贡献。他曾用数学方法对电磁场的性质作了有

益的探讨,试图用数学公式把电力和磁力统一起来。1846年便成功地完成了电力、磁力和电流的‚力的活动影像法‛,这已经是电磁场理论的雏形了(如果再前进一步,就会深人到电磁波问题)。他曾在日记中写道:‚假使我能把物体对于电磁和电流有关的状态重新作一番更特殊的考察,我肯定会超出我现在所知道的范围,不过那当然是以后的事了。‛他的伟大之处,在于能把自己的全部研究成果,毫无保留地介绍给了麦克斯韦,并鼓励麦克斯韦建立电磁现象的统一理论,为麦克斯韦最后完成电磁场理论奠定了基础。

他十分重视理论联系实际。1875年预言了城市将采用电力照明,1879年又提出了远距离输电的可能性。他的这些设想以后都得以实现。1881年他对电动机进行了改造,大大提高了电动机的实用价值。在电工仪器方面,他的主要贡献是建立电磁量的精确单位标准和设计各种精密的测量仪器。他发明了镜式电流计(大大提高了测量灵敏度)、双臂电桥、虹吸记录器(可自动记录电报信号)等等,大大促进了电测量仪器的发展。根据他的建议,1861年英国科学协会设立了一个电学标准委员会,为近代电学量的单位标准奠定了基础。在工程技术中,1855年他研究了电缆中信号传播情况,解决了长距离海底电缆通讯的一系列理论和技术问题。经过三次失败,历经两年的多方研究与试验,终于在1858年协助装设了第一条大西洋海底电缆,这是开尔文相当出名的一项工作。他善于把教学、科研、工业应用结合在一起,在教学上注意培养学生的实际工作能力。在格拉斯哥大学他组建了英国第一个为学生用的课外实验室。

汤姆孙还将物理学用到完全不同的领域。他研究过太阳热能的起源和地球的热平衡。他的方法可靠而有趣,但只由于他不知道太阳和地球上的能量来自核能,因而不可能得到正确的结论。他试图用落到太

阳上的陨石或用引力收缩来解释太阳热能的起源。约在1854年,他估算太阳的\"年龄\"小于5×108年,而这只是我们现在知道的值的十分之一。

从地球表面附近的温度梯度,汤姆孙试图推算出地球热的历史和年龄。他的估算仍然太低,仅为4×108年,而实际值约为5×109年。地质学家以地质现象的演变为理论根据,很快就发现他的估算是错误的。他们不能驳倒汤姆孙的数学,但他们肯定他的假定是错误的。同样,生物学家也发现汤姆孙给出的时间进程与最新的进化论的观念相悖。这一争论持续了多年,汤姆孙完全不理解别人的反对意见是正确的。最后,直到放射性和核反应的发现,才证明了汤姆孙假设的前提是完全错误的。

流体力学特别是其中的涡旋理论成为汤姆孙最喜爱的学科之一,他受亥姆霍兹工作的启示,发现了一些有价值的定理。他航行的收获之一是在1876年发明了适用于铁船的特殊罗盘,这一发明后来为英国海军所采用,而且一直用到被现代回转罗盘代替为止。汤姆孙的企业生产了许多磁罗盘和水深探测仪,从中大为获利。

基于他的实践经验和理论知识,汤姆孙感到迫切需要统一电学单位,公制的引入使法国革命向前跨了一大步,但是电学测量却产生了全新的问题。高斯和韦伯奠定了绝对单位制的理论基础,\"绝对\"意味着它们与特定的物质或标准无关,仅取决于普适的物理定律。在绝对单位制中如何确定刻度,如何选择合适的倍数因子使它能方便地应用于工业,如何劝说科技界共同接受这一单位制,所有这一切都是重要并且困难的任务。1861年英国科学协会任命一个委员会开始这项工作,汤姆孙是其中的一员。他们努力工作了许多年,一直到1881

年,由汤姆孙和亥姆霍兹起主导作用的在巴黎召开的一次国际代表大会,和1893年,在芝加哥召开的另一次代表大会,才正式接受这一新的单位制,并采用伏特、安培、法拉和欧姆等作为电学单位,从此它们被普遍使用。然而,单位制的问题并未就此解决,后来的一些会议又改变了其中某些标准量的定义,它们的实际值也相应变动了,虽然这种变动是非常小的。

开尔文一生谦虚勤奋,意志坚强,不怕失败,百折不挠。在对待困难问题上他讲:‚我们都感到,对困难必须正视,不能回避;应当把它放在心里,希望能够解决它。无论如何,每个困难一定有解决的办法,虽然我们可能一生没有能找到。‛他这种终生不懈地为科学事业奋斗的精神,永远为后人敬仰。1896年在格拉斯哥大学庆祝他50周年教授生涯大会上,他说:‚有两个字最能代表我50年内在科学研究上的奋斗,就是‘失败’两字。‛这足以说明他的谦虚品德。为了纪念他在科学上的功绩,国际计量大会把热力学温标(即绝对温标)称为开尔文(开氏)温标,热力学温度以开尔文为单位,是现在国际单位制中七个基本单位之一。

开尔文的一生是非常成功的,他可以算作世界上最伟大的科学家中的一位。他于1907年12月17日去世时,得到了几乎整个英国和全世界科学家的哀悼。他的遗体被安葬在威斯敏斯特教堂牛顿墓的旁边。

麦克斯韦是19世纪伟大的英国物理学家,经典电动力学的创始人,统计物理学的奠基人之一。

麦克斯韦1831年6月13日出生于爱丁堡。16岁时进入爱丁堡大

学,三年后转入剑桥大学学习数学,1854年毕业并留校任教,两年后到苏格兰的马里沙耳学院任自然哲学教授,1860年到伦敦国王学院任教,1871年受聘筹建剑桥大学卡文迪什实验室,并任第一任主任。1879年11月5日在剑桥逝世。

乔治〃西蒙〃欧姆(Georg Simon Ohm,1787~1854年)是德国物理学家。生于巴伐利亚埃尔兰根城。欧姆的父亲是一个技术熟练的锁匠,对哲学和数学都十分爱好。欧姆从小就在父亲的教育下学习数学并受到有关机械技能的训练,这对他后来进行研究工作特别是自制仪器有很大的帮助。

1800年在中学接受过古典式教育。1803年考入埃尔兰根大学,未毕业就在一所中学教书。1811年欧姆又回到埃尔兰根完成了大学学业,并通过考试于1813年获得哲学博士学位。1817年,他的《几何学教科书》一书出版。同年应聘在科隆大学预科教授物理学和数学。在该校设备良好的实验室里,作了大量实验研究,完成了一系列重要发明。他最主要的贡献是通过实验发现了电流公式,后来被称为欧姆定律。1826年,他把这些研究成果写成题目为《金属导电定律的测定》的论文,发表在德国《化学和物理学杂志》上。欧姆在1827年出版的《动力电路的数学研究》一书中,从理论上推导了欧姆定律,此外他对声学也有贡献。1833年,他前往纽伦堡理工学院任物理学教授。1841年,欧姆获英国伦敦皇家学会的柯希利奖章,第二年当选为该学会的国外会员。1852年,他被任命为慕尼黑大学教授。为了纪念他,人们把电阻的单位命名为欧姆。其定义是:在电路中两点间,当通过1安培稳恒电流时,如果这两点间的电压为1伏特,那么这两点间导体的电阻便定义为1欧姆。

1805年,欧姆进入爱尔兰大学学习,后来由于家庭经济困难,于

1806年被迫退学。通过自学,他于1811年又重新回到爱尔兰大学,顺利地取得了博士学位。大学毕业后,欧姆靠教书维持生活。从1820年起,他开始研究电磁学。

欧姆的研究工作是在十分困难的条件下进行的。他不仅要忙于教学工作,而且图书资料和仪器都很缺乏,他只能利用业余时间,自己动手设计和制造仪器来进行有关的实验。1826年,欧姆发现了电学上的一个重要定律——欧姆定律,这是他最大的贡献。这个定律在我们今天看来很简单,然而它的发现过程却并非如一般人想象的那么简单。欧姆为此付出了十分艰巨的劳动。在那个年代,人们对电流强度、电压、电阻等概念都还不大清楚,特别是电阻的概念还没有,当然也就根本谈不上对它们进行精确测量了;况且欧姆本人在他的研究过程中,也几乎没有机会跟他那个时代的物理学家进行接触,他的这一发现是独立进行的。

欧姆最初进行的试验主要是研究各种不同金属丝导电性的强弱,用各种不同的导体来观察磁针的偏转角度。后来在试验改变电路上的电动势中,他发现了电动势与电阻之间的依存关系,这就是欧姆定律。这一定律可以表示为两种形式:一是部分电路的欧姆定律,通过部分电路的电流,等于该部分电路两端的电压,除以该部分电路的电阻;二是全电路的欧姆定律,即通过闭合电路的电流,等于电路中电源的电动势,除以电路中的总电阻。

欧姆的研究成果最初公布时,没有引起科学界的重视,并受到一些人的攻击,直到1841年,英国皇家学会授予欧姆科普勒奖章,欧姆的工作才得到了普遍的承认。科普勒奖是当时科学界的最高荣誉。1854年7月,欧姆在德国曼纳希逝世。

麦克斯韦集成并发展了法拉第关于电磁相互作用的思想,并于1864年发表了著名的《电磁场动力学理论》的论文,将所有电磁现象概括为一组偏微分方程组,预言了电磁波的存在,并确认光也是一种电磁波,从而创立了经典电动力学。麦克斯韦还在气体运动理论、光学、热力学、弹性理论等方面有重要贡献。

海因里希〃鲁道夫〃赫兹

(1857年2月22日 - 1894年1月1日)德国物理学家,于1888年首先证实了无线电波的存在。并对电磁学有很大的贡献,故频率的国际单位制单位赫兹以他的名字命名。

生平与科学贡献

赫兹出生在德国汉堡一个改信基督教的犹太家庭。父亲是汉堡城的一名顾问,母亲是一位医生的女儿。在它去柏林大学就读之前就已经展现出良好的科学和语言天赋,喜欢学习阿拉伯语和梵文。他曾经在德国德累斯顿、慕尼黑和柏林等地学习科学和工程学。他是 古斯塔夫〃基尔霍夫和赫尔曼〃范〃亥姆霍兹的学生。1880年赫兹获得博士学位,但继续跟随亥姆霍兹学习,直到1883年他收到来自基尔大学出任理论物理学讲师的邀请。1885年他获得卡尔斯鲁厄大学正教授资格,并在那里发现电磁波。

随着迈克尔逊在1881年进行的实验和1887年的迈克尔逊-莫雷实验推翻了光以太的存在,赫兹改写了麦克斯韦方程组,将新的发现纳入其中。通过实验,他证明电信号象詹姆士〃麦克斯韦和迈克尔〃法

拉第预言的那样可以穿越空气,这一理论是发明无线电的基础。他注意到带电物体当被紫外光照射时会很快失去它的电荷,发现了光电效应 (后来由阿尔伯特〃爱因斯坦给予解释)。

1894年37岁的赫兹因为败血症在波恩英年早逝。他的侄子古斯塔夫〃路德维格〃赫兹是诺贝尔奖获得者, 古斯塔夫的儿子卡尔〃海尔莫斯〃赫兹创立了超声影像医学(例如常见的B超)。 法拉第

英国物理学家、化学家,也是著名的自学成才的科学家。 1791年9月22日出生萨里郡纽因顿一个贫苦铁匠家庭。因家庭贫困仅上过几年小学,13岁时便在一家书店里当学徒。书店的工作使他有机会读到许多科学书籍。在送报、装订等工作之余,自学化学和电学,并动手做简单的实验,验证书上的内容。利用业余时间参加市哲学学会的学习活动,听自然哲学讲演,因而受到了自然科学的基础教育。由于他爱好科学研究,专心致志,受到英国化学家戴维的赏识,1813年3月由戴维举荐到皇家研究所任实验室助手。这是法拉第一生的转折点,从此他踏上了献身科学研究的道路。同年10月戴维到欧洲大陆作科学考察,讲学,法拉第作为他的秘书、助手随同前往。历时一年半,先后经过法国、瑞士、意大利、德国、比利时、荷兰等国,结识了安培、盖〃吕萨克等著名学者。沿途法拉第协助戴维做了许多化学实验,这大大丰富了他的科学知识,增长了实验才干,为他后来开展独立的科学研究奠定了基础。1815年5月回到皇家研究所在戴维指导下进行化学研究。1824年1月当选皇家学会会员,1825年2月任皇家研究所实验室主任,1833----1862任皇家研究所化学教授。1846年荣获伦福德奖章和皇家勋章。1867年8月25日逝世。

楞次(Lenz,Heinrich Friedrich Emil)

1804年2月24日诞生于爱沙尼亚.16岁以优异成绩考入家乡的道帕特大学.1828年被挑选为俄国圣彼得堡科学院的初级科学助理,1830年被选为圣彼得堡科学院通讯院士,1834年选为院士.曾长期担任圣彼得堡大学物理数学系主任,后来由教授会选为第一任校长.

楞次在物理学上的主要成就是发现了电磁感应的楞次定律和电热效应的焦耳-楞次定律.

1833年,楞次在圣彼得堡科学院宣读了他的题为‚关于用电动力学方法决定感生电流方向‛的论文,提出了楞次定律.亥姆霍兹证明楞次定律是电磁现象的能量守恒定律.

在电热方面,1843年楞次在不知道焦耳发现电流热作用定律(1841年)的情况下,独立地发现了这一定律.他用改善实验方法和改用酒精作传热介质,提高了实验的精度.

1831年,楞次基于感应电流的瞬时和类冲击效应,利用冲击法对电磁现象进行了定量研究,确定了线圈中的感应电动势等于每匝线圈中电动势之和,而与所用导线的粗细和种类无关.1838年,楞次还研究了电动机与发电机的转换性,用楞次定律解释了其转换原理.1844年,楞次在研究任意个电动势和电阻的并联时,得出了分路电流的定律,比基尔霍夫发表更普遍的电路定律早了4年.

1865年寒假,楞次在意大利罗马中风去世

洛伦兹( Lorentz,Hendrik Antoon 1853—1928)

是荷兰物理学家、数学家.1853年7月18日生于阿纳姆.1870年入莱顿大学学习数学、物理学,1875年获博士学位.25岁起任莱顿大学理论物理学教授,达35年.

洛伦兹是经典电子论的创立者.他认为电具有‚原子性‛,电的本身是由微小的实体组成的.后来这些微小实体被称为电子.洛伦兹以电子概念为基础来解释物质的电性质.从电子论推导出运动电荷在磁场中要受到力的作用,即洛伦兹力.他把物体的发光解释为原子内部电子的振动产生的.这样当光源放在磁场中时,光源的原子内电子的振动将发生改变,使电子的振动频率增大或减小,导致光谱线的增宽或分裂.1896年10月,洛伦兹的学生塞曼发现,在强磁场中钠光谱的D线有明显的增宽,即产生塞曼效应,证实了洛伦兹的预言.塞曼和洛伦兹共同获得1902年诺贝尔物理学奖.

1904年,洛伦兹证明,当把麦克斯韦的电磁场方程组用伽利略变换从一个参考系变换到另一个参考系时,真空中的光速将不是一个不变的量,从而导致对不同惯性系的观察者来说,麦克斯韦方程及各种电磁效应可能是不同的.为了解决这个问题,洛伦兹提出了另一种变换公式,即洛伦兹变换.用洛伦兹变换,将使麦克斯韦方程从一个惯性系变换到另一个惯性系时保持不变.后来,爱因斯坦把洛伦兹变换用于力学关系式,创立了狭义相对论.

1802年2月6日 英国物理学家惠斯通诞辰

惠斯通,1802年2月6日生,是英国物理学家,发明精确测量电阻的惠斯通电桥,为各实验室所广泛应用。1834年任伦敦国王学院的实验哲学教授,同年,在实验中他用旋转镜测量导体中电流的速度。根据他的提议,这种旋转镜被用于测量光速。3年后,他同英国W.F.库克-道取得了早期有线

电报的专利。1843年在英国数学家S.克里斯蒂的建议下,他研制成功惠斯通电桥并推广其应用。他还发明观察立体图像的体视镜,现仍用于观察X射线和航空照相。他首先在发电机中采用电磁铁,并发明普莱费尔密码。 1875年10月19日逝世。

惠斯通

开放分类: 电路、人物、英国、科学家、物理学家

惠斯通,1802年2月6日生,是英国物理学家,发明精确测量电阻的惠斯通电桥,为各实验室所广泛应用。1834年任伦敦国王学院的实验哲学教授,同年,在实验中他用旋转镜测量导体中电流的速度。根据他的提议,这种旋转镜被用于测量光速。3年后,他同英国W.F.库克-道取得了早期有线电报的专利。1843年在英国数学家S.克里斯蒂的建议下,他研制成功惠斯通电桥并推广其应用。他还发明观察立体图像的体视镜,现仍用于观察X射线和航空照相。他首先在发电机中采用电磁铁,并发明普莱费尔密码。

1875年10月19日逝世。

一、生平简介

惠斯通(1802~1875),英国物理学家。1802处出生于英格兰的格洛斯特。青少年时代受到严格的正规训练,兴趣广泛,动手能力很强,1834年被伦敦英王学院聘为实验物理学教授。1836年当选为英国伦敦皇家学会会员,1837年当选为法国科学院外国院士。1868年由英王封为爵士,1875年10月19日在巴黎逝世。终年73岁。

二、科学成就

惠斯通很早就对物理学研究表现出极大兴趣,在物理学的许多方

面都做出了重要贡献:

1.在电学研究方面,惠斯通有许多独特的方法和独到的见解。他利用旋转片的方法,巧妙地测定了电磁波在金属导体中的速率,测得的值超过了每秒28万公里。惠斯通巧妙地采用了转速这个数值比较大的量代替数值很小的时间间隔,后来这个方法被法国物理学家傅科(1819-1868)用来首次精确测定了光速。惠斯通是真正领悟欧姆定律,并在实际中应用的第一批英国科学家之一。

2.在光学方面,惠斯通对双筒视觉、反射式立体镜等进行了研究,阐述了视觉可靠性的根源问题。他对人眼的视觉、色觉等生理光学的问题也作了正确的阐述。

3.惠斯通还对乐音在刚性直导线上传输的问题进行了研究,取得了出色的成果,还用实验验证了吹奏乐器中空气振动问题中的伯努利原理。

三、趣闻轶事

1.惠斯通电桥不是惠斯通发明的

在测量电阻及其它电学实验时,经常会用到一种叫惠斯通电桥的电路,很多人认为这种电桥是惠斯通发明的,其实,这是一个误会,这种电桥是由英国发明家克里斯蒂在1833年发明的,但是由于惠斯通第一个用它来测量电阻,所以人们习惯上就把这种电桥称作了惠斯通电桥。

2.现代电报机的发明家

惠斯通还是现代电报机的发明家,这得益于他青少年时代所受的严格的正规训练,他具有很强的动手能力。1937年惠斯通同科克合作,大批生产市售电报机,并且取得了两种针式电报机的专利权。 另外,惠斯通还于1852年发明了一种幻视镜,可以把透视图象倒映在人的眼睛上。

因篇幅问题不能全部显示,请点此查看更多更全内容