流水行船问题
专题简析:
当你逆风骑自行车时有什么感觉?是的,逆风时需用很大力气,因为面对的是迎面吹来的风。当顺风时,借着风力,相对而言用里较少。在你的生活中是否也遇到过类似的如流水行船问题。
解答这类题的要素有下列几点:水速、流速、划速、距离,解答这类题与和差问题相似。划速相当于和差问题中的大数,水速相当于小数,顺流速相当于和数,逆流速相当于差速。
划速=(顺流船速+逆流船速)÷2; 水速=(顺流船速—逆流船速)÷2; 顺流船速=划速+水速; 逆流船速=划速—水速; 顺流船速=逆流船速+水速×2; 逆流船速=逆流船速—水速×2。 例题1:
一条轮船往返于A、B两地之间,由A地到B地是顺水航行,由B地到A地是逆水航行。已知船在静水中的速度是每小时20千米,由A地到B地用了6小时,由B地到A地所用的时间是由A地到B地所用时间的1.5倍,求水流速度。
在这个问题中,不论船是逆水航行,还是顺水航行,其行驶的路程相等,都等于A、B两地之间的路程;而船顺水航行时,其形式的速度为船在静水中的速度加上水流速度,而船在怒水航行时的行驶速度是船在静水中的速度与水流速度的差。
解:设水流速度为每小时x千米,则船由A地到B地行驶的路程为[(20+x)×6]千米,船由B地到A地行驶的路程为[(20—x)×6×1.5]千米。列方程为
(20+x)×6=(20—x)×6×1.5 解得x=4。 练习1:
1、水流速度是每小时15千米。现在有船顺水而行,8小时行320千米。若逆水行320千米需几小时? 2、水流速度每小时5千米。现在有一船逆水在120千米的河中航行需6小时,顺水航行需几小时?
1
1
3、一船从A地顺流到B地,航行速度是每小时32千米,水流速度是每小时4千米,2 天可以到达。次船从B地返回到A地需多
2少小时? 例题2:
有一船行驶于120千米长的河中,逆行需10小时,顺行要6小时,求船速和水速。
这题条件中有行驶的路程和行驶的时间,这样可分别算出船在逆流时的行驶速度和顺流时的行驶速度,再根据和差问题就可以算出船速和水速。列式为
逆流速:120÷10=12(千米/时) 顺流速:120÷6=12(千米/时) 船速:(20+12)÷2=16(千米/时) 水速:(20—12)÷2=4(千米/时) 练习2:
1、有只大木船在长江中航行。逆流而上5小时行5千米,顺流而下1小时行5千米。求这只木船每小时划船速度和河水的流速各是多少?
2、有一船完成360千米的水程运输任务。顺流而下30小时到达,但逆流而上则需60小时。求河水流速和静水中划行的速度? 3、一海轮在海中航行。顺风每小时行45千米,逆风每小时行31千米。求这艘海轮每小时的划速和风速各是多少? 例题3:
轮船以同一速度往返于两码头之间。它顺流而下,行了8小时;逆流而上,行了10小时。如果水流速度是每小时3千米,求两码头之间的距离。
在同一线段图上做下列游动性示意图36-1演示:
2
_ ??_ ??
_ 8_ B10_
_ 36—? —1
_ A
因为水流速度是每小时3千米,所以顺流比逆流每小时快6千米。如果怒六时也行8小时,则只能到A地。那么A、B的距离就是顺流比逆流8小时多行的航程,即6×8=48千米。而这段航程又正好是逆流2小时所行的。由此得出逆流时的速度。列算式为
(3+3)×8÷(10—8)×10=240(千米) 练习3:
1、一走轮船以同样的速度往返于甲、乙两个港口,它顺流而下行了7小时,逆流而上行了10小时。如果水流速度是每小时3.6千米,求甲、乙两个港口之间的距离。
2、一艘渔船顺水每小时行18千米,逆水每小时行15千米。求船速和水速各是多少?
3、沿河有上、下两个市镇,相距85千米。有一只船往返两市镇之间,船的速度是每小时18.5千米,水流速度每小时1.5千米。求往返依次所需的时间。 例题4:
汽船每小时行30千米,在长176千米的河中逆流航行要11小时到达,返回需几小时?
依据船逆流在176千米的河中所需航行时间是11小时,可以求出逆流的速度。返回原地是顺流而行,用行驶路程除以顺流速度,可求出返回所需的时间。
逆流速:176÷11=16(千米/时)
所需时间:176÷[30+(30—16)]=4(小时) 练习4:
1、当一机动船在水流每小时3千米的河中逆流而上时,8小时行48千米。返回时水流速度是逆流而上的2倍。需几小时行195千米? 2、已知一船自上游向下游航行,经9小时后,已行673千米,此船每小时的划速是47千米。求此河的水速是多少?
3
3、一只小船在河中逆流航行3小时行3千米,顺流航行1小时行3千米。求这只船每小时的速度和河流的速度各是多少? 例题5:
有甲、乙两船,甲船和漂流物同时由河西向东而行,乙船也同时从河东向西而行。甲船行4小时后与漂流物相距100千米,乙船行12小时后与漂流物相遇,两船的划速相同,河长多少千米?
漂流物和水同速,甲船是划速和水速的和,甲船4小时后,距漂流物100千米,即每小时行100÷4=25(千米)。乙船12小时后与漂流物相遇,所受的阻力和漂流物的速度等于划速。这样,即可算出河长。列算式为
船速:100÷4=25(千米/时) 河长:25×12=300(千米) 练习5:
1、有两只木排,甲木排和漂流物同时由A地向B地前行,乙木排也同时从B地向A地前行,甲木排5小时后与漂流物相距75千米,乙木排行15小时后与漂流物相遇,两木排的划速相同,A、B两地长多少千米?
2、有一条河在降雨后,每小时水的流速在中流和沿岸不同。中流每小时59千米,沿岸每小时45千米。有一汽船逆流而上,从沿岸航行15小时走完570千米的路程,回来时几小时走完中流的全程?
3、有一架飞机顺风而行4小时飞360千米。今出发至某地顺风去,逆风会,返回的时间比去的时间多3小时。已知逆风速为75千米/小时,求距目的地多少千米?
流水行船问题
例1 一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。此船在静水中的速度是多少?(适于高年级程度) 解:此船的顺水速度是:25÷5=5(千米/小时)
因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。5-1=4(千米/小时) 综合算式:25÷5-1=4(千米/小时)
例2 一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。水流的速度是每小时多少千米?(适于高年级程度) 解:此船在逆水中的速度是:12÷4=3(千米/小时)
4
因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1(千米/小时)
*例3 一只船,顺水每小时行20千米,逆水每小时行12千米。这只船在静水中的速度和水流的速度各是多少?(适于高年级程度) 解:因为船在静水中的速度=(顺水速度+逆水速度)÷2,所以,这只船在静水中的速度是:(20+12)÷2=16(千米/小时) 因为水流的速度=(顺水速度-逆水速度)÷2,所以水流的速度是:(20-12)÷2=4(千米/小时)
*例4 某船在静水中每小时行18千米,水流速度是每小时2千米。此船从甲地逆水航行到乙地需要15小时。求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?(适于高年级程度) 解:此船逆水航行的速度是:18-2=16(千米/小时) 甲乙两地的路程是:16×15=240(千米) 此船顺水航行的速度是:18+2=20(千米/小时) 此船从乙地回到甲地需要的时间是:240÷20=12(小时)
*例5 某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时。已知水速为每小时3千米。此船从乙港返回甲港需要多少小时?(适于高年级程度)
解:此船顺水的速度是:15+3=18(千米/小时) 甲乙两港之间的路程是:18×8=144(千米) 此船逆水航行的速度是:15-3=12(千米/小时)
此船从乙港返回甲港需要的时间是:144÷12=12(小时) 综合算式:(15+3)×8÷(15-3) =144÷12=12(小时)
*例6 甲、乙两个码头相距144千米,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米。求由甲码头到乙码头顺水而行需要几小时,由乙码头到甲码头逆水而行需要多少小时?(适于高年级程度) 解:顺水而行的时间是:144÷(20+4)=6(小时) 逆水而行的时间是:144÷(20-4)=9(小时)
例7 一条大河,河中间(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米。一只船在河中间顺流而下,6.5小时
5
行驶260千米。求这只船沿岸边返回原地需要多少小时?(适于高年级程度) 解:此船顺流而下的速度是:260÷6.5=40(千米/小时) 此船在静水中的速度是:40-8=32(千米/小时) 此船沿岸边逆水而行的速度是:32-6=26(千米/小时) 此船沿岸边返回原地需要的时间是:260÷26=10(小时) 综合算式:260÷(260÷6.5-8-6) =260÷(40-8-6)=260÷26=10(小时)
*例8 一只船在水流速度是2500米/小时的水中航行,逆水行120千米用24小时。顺水行150千米需要多少小时?(适于高年级程度) 解:此船逆水航行的速度是:120000÷24=5000(米/小时) 此船在静水中航行的速度是:5000+2500=7500(米/小时) 此船顺水航行的速度是:7500+2500=10000(米/小时) 顺水航行150千米需要的时间是:150000÷10000=15(小时) 综合算式:150000÷(120000÷24+2500×2)
=150000÷(5000+5000)=150000÷10000=15(小时)
6
因篇幅问题不能全部显示,请点此查看更多更全内容