您的当前位置:首页圆锥曲线常用结论

圆锥曲线常用结论

2021-06-08 来源:乌哈旅游
圆锥曲线常用结论

1.圆锥曲线的定义:

(1)定义中要重视“括号”内的限制条件:

椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段FF,当常数小于时,无轨迹;

双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|FF|,定义中的“绝对值”与<|FF|不可忽视。若=|FF|,则轨迹是以F,F为端点的两条射线,若﹥|FF|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

抛物线定义中,定点和定直线是焦点和准线,要注意定点不在定直线上,否则轨迹为过定点且和定直线垂直的直线.(2)抛物线定义给出了抛物线上的点到焦点距离与此点到准线距离间的关系,要善于运用定义对它们进行相互转化。

2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):

(1)椭圆:焦点在轴上时()(参数方程,其中为参数),焦点在轴上时=1()。方程表示椭圆的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)。

(2)双曲线:焦点在轴上: =1,焦点在轴上:=1()。方程表示双曲线的充要条件是什么?(ABC≠0,且A,B异号)。

(3)抛物线:

开口向右时,开口向左时,开口向上时,开口向下时。

3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。(2)双曲线:由,项系数的正负决定,焦点在系数为正的坐标轴上;

(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。

特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F,F的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,最大,,在双曲线中,最大,。

4.圆锥曲线的几何性质:

(1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为

2,短轴长为2;④准线:两条准线; ⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。

(2)双曲线(以()为例):①范围:或;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2,虚轴长为2,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;④准线:两条准线; ⑤离心率:,双曲线,等轴双曲线,越小,开口越小,越大,开口越大;⑥两条渐近线:。(3)抛物线(以为例):①范围:;②焦点:一个焦点,其中的几何意义是:焦点到准线的距离;③对称性:一条对称轴,没有对称中心,只有一个顶点(0,0);④准线:一条准线; ⑤离心率:,抛物线。

5、点和椭圆()的关系:(1)点在椭圆外;(2)点在椭圆上=1;(3)点在椭圆内

6.直线与圆锥曲线的位置关系:

(1)相交:直线与椭圆相交; 直线与双曲线相交,但直线与双曲线相交不一定有,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故是直线与双曲线相交的充分条件,但不是必要条件;直线与抛物线相交,但直线与抛物线相交不一定有,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故也仅是直线与抛物线相交的充分条件,但不是必要条件。

(2)相切:直线与椭圆相切;直线与双曲线相切;直线与抛物线相切;

(3)相离:直线与椭圆相离;直线与双曲线相离;直线与抛物线相离。

特别提醒:(1)直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交。如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;

(2)过双曲线=1外一点的直线与双曲线只有一个公共点的情况如下:①P点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;②P点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P

为原点时不存在这样的直线;

(3)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线。

7、焦半径(圆锥曲线上的点P到焦点F的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径,其中表示P到与F所对应的准线的距离。

8、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题:常利用第一定义和正弦、余弦定理求解。设椭圆或双曲线上的一点到两焦点的距离分别为,焦点的面积为,则在椭圆中, ①=,且当即为短轴端点时,最大为=;②,当即为短轴端点时,的最大值为bc;对于双曲线的焦点三角形有:①;②。

9、抛物线中与焦点弦有关的一些几何图形的性质:(1)以过焦点的弦为直径的圆和准线相切;(2)设AB为焦点弦, M为准线与x轴的交点,则∠AMF=∠BMF;(3)设AB为焦点弦,A、B在准线上的射影分别为A,B,若P为AB的中点,则PA⊥PB;(4)若AO的延长线交准线于C,则BC平行于x轴,反之,若过B点平行于x轴的直线交准线于C点,则A,O,C三点共

线。                              

10、弦长公式:若直线与圆锥曲线相交于两点A、B,且分别为A、B的横坐标,则=,若分别为A、B的纵坐标,则=,若弦AB所在直线方程设为,则=。特别地,焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解。

11、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。在椭圆中,以为中点的弦所在直线的斜率k=-;在双曲线中,以为中点的弦所在直线的斜率k=;在抛物线中,以为中点的弦所在直线的斜率k=。

12.你了解下列结论吗?

(1)双曲线的渐近线方程为;

(2)以为渐近线(即与双曲线共渐近线)的双曲线方程为为参数,≠0)。如与双曲线有共同的渐近线,且过点的双曲线方程为_______(答:)

(3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为;(4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)为,焦准距(焦点到相应准线的距离)为,抛物线的通径为,焦准距为;

(5)通径是所有焦点弦(过焦点的弦)中最短的弦;(6)若抛物线的焦点弦为AB,,则①;②

(7)若OA、OB是过抛物线顶点O的两条互相垂直的弦,则直线AB恒经过定点

13.动点轨迹方程:

(1)求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围;

(2)求轨迹方程的常用方法:

①直接法:直接利用条件建立之间的关系;

②待定系数法:已知所求曲线的类型,求曲线方程――先根据条件设出所求曲线的方程,再由条件确定其待定系数。 

③定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;

④代入转移法:动点依赖于另一动点的变化而变化,并且又在某已知曲线上,则可先用的代数式表示,再将代入已知曲线得要求的轨迹方程;

⑤参数法:当动点坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。

14、解析几何与向量综合时可能出现的向量内容:(1) 给出直线的方向向量或;

(2)给出与相交,等于已知过的中点;(3)给出,等于已知是的中点;

(4)给出,等于已知与的中点三点共线;

(5) 给出以下情形之一:①;②存在实数;③若存在实数,等于已知三点共线.

(6) 给出,等于已知是的定比分点,为定比,即

(7) 给出,等于已知,即是直角,给出,等于已知是钝角, 给出,等于已知是锐角,

(8)给出,等于已知是的平分线/

(9)在平行四边形中,给出,等于已知是菱形;(10) 在平行四边形中,给出,等于已知是矩形;

(11)在中,给出,等于已知是的外心(三角形外接圆的圆心,三角形的外心是

三角形三边垂直平分线的交点);

(12) 在中,给出,等于已知是的重心(三角形的重心是三角形三条中线的交点);

(13)在中,给出,等于已知是的垂心(三角形的垂心是三角形三条高的交点);

(14)在中,给出等于已知通过的内心;

(15)在中,给出等于已知是的内心(三角形内切圆的圆心,三角形的内心是三角形三条角平分线的交点);

(16) 在中,给出,等于已知是中边的中线;

因篇幅问题不能全部显示,请点此查看更多更全内容