作者:xubin341719(欢迎转载,请注明作者,请尊重版权,谢谢!) 欢迎指正错误,共同学习、共同进步!!
下载链接:Bluetooth PROFILE SPECIFICATIONS (基本涵盖所有蓝牙协议)、buletooth core 2.1-4.0 SPECIFICATION(三蓝牙版本的核心协议v2.1\\v3.0\\v4.0)、蓝牙核心技术与应用 马建仓 版(蓝牙协议相关初学者必读,开发者参考) 蓝牙核心技术概述(一):蓝牙概述 蓝牙核心技术概述(二):蓝牙使用场景
蓝牙核心技术概述(三): 蓝牙协议规范(射频、基带链路控制、链路管理) 蓝牙核心技术概述(四):蓝牙协议规范(HCI、L2CAP、SDP、RFOCMM) 蓝牙核心技术概述(五):蓝牙协议规范(irOBEX、BNEP、AVDTP、AVCTP)
蓝牙协议是蓝牙设备间交换信息所应该遵守的规则。与开放系统互联(OSI)模型一样,蓝牙技术的
协议体系也采用了分层结构,从底层到高层形成了蓝牙协议栈,各层协议定义了所完成的功能和使用数据分组格式,以保证蓝牙产品间的互操作性。 一、射频协议
射频位置如上图红色部分。
1、工作频率
蓝牙工作在2.4GHz ISM频段上,蓝牙采用跳频扩谱技术主动的避免工作频段受干扰(微波炉的工作
频率也是2.4GHz)。
地理位置 ISM频段范围 射频信道频率 中国、美国、欧洲 2400.0~2483.5MHz F=(2402+k)MHz,k在0、1、……78中随机取值 法国 日本 西班牙 2446.5~2483.5MHz F=(2454+k)MHz,k在0、1、……22中随机取值 2471.0~2497.0MHz F=(2473+k)MHz,k在0、1、……22中随机取值 2445.0~2475.0MHz F=(2449+k)MHz,k在0、1、……22中随机取值 我国的蓝牙频率在2.402GHz~2.483GHz,蓝牙每个频道的宽度为1MHz,为了减少带外辐射的干扰,
保留上、下保护为3.5MHz和2MHz,79个跳频点中至少75个伪随机码跳动,30S内任何一个频点使用时长不能超过0.4S。
2、跳频技术、发射功率、时隙
(1)、发射功率:蓝牙发射功率分三级:一级功率100mW(20dBm);二级功率2.5mW(4dBm);三级功率1mW(0dBm);
(2)、物理信道:蓝牙物理信道有伪随机序列控制的79个跳频点构成,不同跳频序列代表不同的信道。
(3)、时隙:蓝牙跳频速率为1600次/s,每个时间为625uS(1S/1600)称为一个时隙;
二、基带与链路控制协议
蓝牙发送数据时,基带部分将来自高层的数据进行信道编码,向下发给射频进行发送;接收数据时,
将解调恢复空中数据并上传给基带,基带进行信道编码传送给上层。
作用:跳频选择、蓝牙编址、链路类型、信道编码、收发规则、信道控制、音频规范、安全设置。
1、蓝牙分组编码为小端模式; 2、蓝牙地址
BD_ADDR:BluetoothDevice Address; LAP:LowerAddress Part 低地址部分; UAP: UpperAddress Part 高地址部分;
NAP: Non-significantAddress Part 无效地址部分。
3、蓝牙时钟
每个蓝牙设备都有一个独立运行的内部系统时钟,称为本地时钟(Local Clock),决定定时器的收发
跳频。为了与其他设备同步,本地时钟要加一个偏移量(offset),提供给其他设备同步。
蓝牙基带四个关键周期:312.5uS、625uS、1.25mS、1.28S。
CLKN:本地时钟:
CLKE:预计时钟,扫描寻呼过程中用到; CLK:设备实际运行的时钟频率。
CLKE、CLK由CLKN加上一个偏移量得到的。
4、蓝牙物理链路:
通信设备间物理层的数据连接通道就是物理链路。
ACL(Asynchronous Connectionless)异步无连接链路;对时间要求不敏感的数据通信,如文件数
据、控制信令等。
SCO(Synochronous Connection Oriented)同步面向连接链路;对时间比较敏感的通信,如:语音;
最多只支持3条SCO链路,不支持重传。
ACL用于数据传输;
5、蓝牙基带分组:
基带分组至少包括:接入码、分组头、有效载荷;
(1)、接入码用于同步、直流、载频泄漏偏置补偿标识; (2)、分组头包含链路信息,确保纠正较多的错误。 分组类型如下:
分组类别 Type(b3b2b1b0) 时隙 SCO ACL 链路控制分组 0000 0001 0010 0011 单时隙分组 0100 0101 0110 0111 1 NULL NULL POLL POLL FHS FHS DM1 DM1 1 未定义 NULL HV1 HV2 HV3 1000 1001 3时隙分组 1010 1011 1100 1101 5时隙分组 1110 1111
DV NULL AUX1 3 未定义 DM3 DH3 未定义 5 未定义 DM5 ACL分组形式为:D(M|H)(1|3|5),D代表数据分组,M代表用2/3比例的FEC的中等速率分组;H
代表不使用纠错码的高速率分组;1、3、5分别代表分组所占用的时隙数目;
DM1、DM3、DM5、DH1、DH3、DH5
SCO分组形式为:HV(1|2|3)。HV代表高质量语言分组,1、2、3有效载荷所采用的纠错码方法。1
为1/3比例FEC,设备2个时隙发送一个单时隙分组;2为2/3比例FEC,设备4个时隙发送一个单时隙分组;3为不使用纠错码,设备6个时隙发送一个单时隙分组
HV1、HV2、HV3
ALC 分组:
类型 有效载荷头/字节 用户有效载荷/字节 FEC CRC 对称最大速率/kbps 非对称速率/kbps 前向 DM1 1 DH1 1 DM3 2 DH3 2 DM5 2 MH5 2 AUX1 1 SCO分组: 类型 HV1 HV2 HV3 DV
1D 有效载荷头/字节 无 用户有效载荷/字FEC CRC 有效载荷长节 10 20 30 10+(0-9)D 1/3 2/3 无 2/3D 有D 64+57.6D 度 240位 同步速率/kbps 64 2/1.25ms 4/2.5ms 6/3.75ms 占用Tsco数目/语言长度 0~17 0~27 0~121 0~183 0~224 0~339 0~29 2/3 有 无 有 108.8 172.8 258.1 390.4 286.7 433.9 185.6 108.8 172.8 387.2 585.6 477.8 723.2 185.6 后向 108.8 172.8 54.4 86.4 36.3 57.6 185.6 2/3 有 无 有 2/3 有 无 无 有 无 注释:D 只对数据段有用,DV分组包含数据段,也包含语言段。
(3)、有效载荷
分语言有效载荷、数据有效载荷。
6、蓝牙的逻辑信道
链路控制信道:LinkControl LC 链路管理信道:Link Manage LM
用户异步数据信道:User AsynchronizationUA 用户同步数据信道:UserSynchronization US 用户等时数据信道:UserIsochronous UI UI
7、蓝牙的收发规则
上图为RX缓存。
上图为TX缓存。
新分组到达时,ACL链路的RX缓存器要流量控制,SCO数据不需要流量控制; 8、蓝牙基带信道和网络控制 1)、链路控制器状态:
待机、连接
寻呼page、寻呼扫描pagescan、查询inquiry、查询扫描inquiry scan、主设备相应Master Response、
从设备相应Slave Response、查询相应inquiry response 2) 、连接状态
激活模式active、呼吸模式sniff、保持模式hold、休眠模式park。
3)、待机状态
待机状态是蓝牙设备缺省低功耗状态,此状态下本地时钟以低精度运行。蓝牙从待机转入寻呼扫描状态,对其他寻呼进行响应成为从设备;也可以从待机状态进入查询扫描状态,完成一个完整的寻呼,成为主设备。 9、接入过程 注释:
IAC Inquiry AccessCode 查询接入码;
GIAC:通用查询接入码 DIAC:专用查询接入码; DAC:DeviceAccess Code 设备接入码;
LAP:
建立连接,必须使用查询、寻呼;查询过程使用IAC,发现覆盖区域内的设备、设备的地址及其时钟;连接过程使用DAC,建立连接的设备处理寻呼过程,成为主设备。、(1)、查询过程
蓝牙设备通过查询来发现通信范围内的其他蓝牙设备。查询信息分为GIAC、DIAC两种。查询发起
设备收集所有相应设备的地址、时钟信息。
一设备进入查询状态去发现其他设备,查询状态下连续不断的在不同频点发送查询消息。查询的跳频
序列有GIAC的LAP导出。
一设备想被其他设备发现,就要周期性进入 查询扫描状态,以便相应查询消息。如:我们选择设备
多长时间可见,其实就是 进入查询扫描状态。 A、查询扫描
查询扫描状态下,接收设备扫描接入码的时间长度,足以完成对16个频率的扫描。扫描区间长度
Twindow inquiry scan。扫描在同一个频率上进行,查询过程用32跳专用查询跳频序列,此序列有通用查询的地址决定,相位有本地时钟决定,每隔1.28S变化一次。 B、查询
与寻呼类似,TX用查询跳频序列、RX用查询相应跳频序列。
C、查询相应
从设备响应查询操作。每个设备都有自己的时钟,使用查询序列相位相同的几率比较小。为了避免多
个设备在同一查询跳频信道同时激活,从设备查询响应规定:从设备收到查询消息,产生0-1023只觉得额一个随机数,锁定当时相位输入值进行跳频选择,从设备此后的RAND时隙中返回到连接或者待机状态。 (2)、寻呼扫描
DAC:DeviceAccess Code 设备接入码
寻呼扫描状态下的设备扫描窗口Twindowpage scan内监听自己的DAC。监听只在一个跳频点进行。
Twindow page scan足够覆盖16个寻呼扫描频点。
寻呼扫描状态,扫描在同一个频率上进行,持续1.28S,在选择另一个不同频率。
SR模式 Tpage scan 寻呼次数Npage R0 R1 R2 预留 连续 <=1.28S <=2.56S -- >=1 >=128 >=256 -- (3)、寻呼
主设备使用寻呼发起一个主—从设备连接,通过在不同的跳频点上重复发送从设备DAC来扑捉从设
备,从设备在寻呼扫描状态被唤醒,接收寻呼。 (4)、寻呼相应过程 三、链路管理器
如上图红色部分,负责完成设备:功率管理、链路质量管理、链路控制管理、数据分组管理、链路安全管理。
1、链路管理协议数据单元
蓝牙链路管理器接收到高层的控制信息后,不是向自身的基带部分分发控制信息,就是与另一台设备的链路管理器进行协商管理。这些控制信息封装在链路管理协议数据单元LMP_PDU中,由ACL分组的有效载荷携带。 2、链路管理器协议规范 (1)、设备功率管理
RSSI保持模式、呼吸模式、休眠模式。 (2)、链路质量管理 QoSQuality of Service
A、ACL链路。 B、SCO链路。
设备寻呼模式、设备角色转换、时钟计时设置、信息交换:版本信息、支持特性、设备名称;建立连接、
(3)、链路控制管理 链路释放。
(4)、数据分组管理
因篇幅问题不能全部显示,请点此查看更多更全内容