峰值平均功率比(PAPR—Peak to Average Power Ratio),简称峰均比(PAPR)。MIMO-OFDM系统能够提供更大的覆盖范围、更好的传输质量、更高的数据速率和频谱效率。然而,由于OFDM 符号是由多个独立经过调制的子载波信号叠加而成的,当各个子载波相位相同或者相近时,叠加信号便会受到相同初始相位信号的调制,从而产生较大的瞬时功率峰值,由此进一步带来较高的峰值平均功率比(PAPR—Peak to Average Power Ratio),简称峰均比(PAPR)。由于一般的功率放大器的动态范围都是有限的,所以峰均比较大的MIMO-OFDM信号极易进入功率放大器的非线性区域,导致信号产生非线性失真,造成明显的频谱扩展干扰以及带内信号畸变,导致整个系统性能严重下降。高峰均比已成为MIMO-OFDM 的一个主要技术阻碍。
分集技术编辑
接收合并技术
分集技术是研究如何充分利用传输中的多径信号能量,以改善传输的可靠性,它也是一项研究利用信号的基本参量在时域、频域与空域中,如何分散开又如何收集起来的技术。“分”与“集”是一对矛盾,在接收端取得若干条相互独立的支路信号以后,可以通过合并技术来得到分集增益。从合并所处的位置来看,合并可以在检测器以前,即在中频和射频上进行合并,且多半是在中频上合并;合并也可以在检测器以后,即在基带上进行合并。合并时采用的准则与方式主要分为四种:最大比值合并(MRC:Maximal Ratio Combining)、等增益合并(EGC:Equal Gain Combining)、选择式合并(SC:Selection Combining)和切换合并(Switching Combining)。
最大比合并
在接收端由多个分集支路,经过相位调整后,按照适当的增益系数,同相相加,再送入检测器进行检测。在接受端各个不相关的分集支路经过相位校正,并按适当的可变增益加权再相加后送入检测器进行相干检测。在做的时候可以设定第i个支路的可变增益加权系数为该分集之路的信号幅度与噪声功率之比。
最大比合并方案在收端只需对接收信号做线性处理,然后利用最大似然检测即可还原出发端的原始信息。其译码过程简单、易实现。合并增益与分集支路数N 成正比。
等增益合并原理
等增益合并也称为相位均衡,仅仅对信道的相位偏移进行校正而幅度不做校正。等增益合并不是任何意义上的最佳合并方式,只有假设每一路信号的信噪比相同的情况下,在信噪比最大化的意义上,它才是最佳的。它输出的结果是各路信号幅值的叠加。对CDMA系统,它维持了接收信号中各用户信号间的正交性状态,即认可衰落在各个通道间造成的差异,也不影响系统的信噪比。当在某些系统中对接收信号的幅度测量不便时选用EGC。
当N (分集重数)较大时,等增益合并与最大比值合并后相差不多,约仅差1dB 左右。等增益合并实现比较简单,其设备也简单。
选择式合并系统
采用选择式合并技术时, N 个接收机的输出信号先送入选择逻辑,选择逻辑再从N 个接收信号中选择具有最高基带信噪比的基带信号作为输出。每增加一条分集支路,对选择式分集输出信噪比的贡献仅为总分集支路数的倒数倍。
切换合并原理图 接收机扫描所有的分集支路,并选择SNR在特定的预设门限之上的特定分支。在该信号的SNR 降低到所设的门限值之下之前,选择该信号作为输出信号。当SNR 低于设定的门限时,接收机开始重新扫描并切换到另一个分支,该方案也称为扫描合并。由于切换合并并非连续选择最好的瞬间信号,因此他比选择合并可能要差一些。但是,由于切换合并并不需要同时连续不停的监视所有的分集支路,因此这种方法要简单得多。 对选择合并和切换合并而言,两者的输出信号都是只等于所有分集支路中的一个信号。另外,它们也不需要知道信道状态信息。因此,这两种方案既可用于相干调制也可用于非相干调制。 合并方式比较 这里比较的主要是最大比合并,等增益合并选择式合并三种方式。 三种合并方式性能比较 可以看出,在这三种合并方式中,最大比值合并的性能最好,选择式合并的性能最差。当N较大时,等增益合并的合并增益接近于最大比值合并的合并增益。 pccpch 编辑
P-CCPCH (Primary Common Control Physical Channel) 主公共控制物理信道
主公共导频信道(P-CPICH):用于移动台的信道估计及码片同步。
一个小区内只有一个主公共控制物理信道,用于承载给用户的同步和承载信息。主公共控制物理信道的帧结构与下行 DPCH( Dedicated Physical Channel)不同,没有TPC (Transmit Power Control),没有TFCI(Transport Format Combination Indicator)且在传输中没有导频,P-CCPCH 在每一时隙的前256片不会传输。主要SCH(Synchronization Channel)和次要SCH在这一时间传输。剩余的时间用于广播信息的传输。
主公共控制物理信道(P-CCPCH,Primary Common Control Physical CHannel)仅用于承载来自传输信道BCH的数据,提供全小区覆盖模式下的系统信息广播, UE上电后将搜索并解码该信道上的数据以获取小区系统信息。
主公共控制物理信道是单向下行信道,帧格式中没有物理层信令TFCI、TPC或SS,为了满足信息容量的要求,P-CCPCH使用两个码分信道来承载BCH数据(P-CCPCH1和P-CCPCH2)。P-CCPCHs固定映射到时隙0(TS0)的扩频因子SF=16的两个码道
1DPCH专用物理信道的发射分集:可采用闭环发射分集,也可以采用时间开关发射分集(TSTD)
2、 PCCPCH的发射分集:可采用TSTD或者空间码分集(SCTD)
MU-MIMO 编辑 MU-MIMO 多用户多输入多输出,是常见的多天线技术。Beamforming即波束成形,是通用信号处理技术,用于控制传播的方向和射频信号的接收。 上行MU-MIMO: 不同用户使用相同的时频资源进行上行发送(单天线发送),从接收端来看,这些数据流可以看作来自一个用户终端的不同天线,从而构成了一个虚拟的MIMO系统,即上行MU-MIMO 下行MU-MIMO: 将多个数据流传输给不同的用户终端,多个用户终端以及eNB构成下行MU-MIMO系统; 下行MU-MIMO可以在接收端通过消除/零陷的方法,分离传输给不同用户的数据流;下行MU-MIMO还可以通过在发送端采用波束赋形的方法,提前分离不同用户的数据流,从而简化接收端的操作。 HSDPA(High Speed Downlink Packet Access)高速下行分组接入,是一种移动通信协议,亦称为3.5G(3½G)。该协议在WCDMA下行链路中提供分组数据业务,在一个5MHz载波上的传输速率可达8-10 Mbit/s(如采用MIMO技术,则可达20 Mbit/s)。在具体实现中,采用了自适应调制和编码(AMC)、多输入多输出(MIMO)、混合自动重传请求(HARQ)、快速调度、快速小区选择等技术。 TD-LTE 发射分集和MIMO
首先发射分集和MIMO端口出来的数据是不一样的~现在设备厂商基本上都是单端口
设备、两端口设备、八端口设备、两端口设备基本上都是发射分集。八端口设备是MIMO还是发射分集?还是MIMO和发射分集都能支持?还是怎么着的?
LTE现在厂家设备都是单端口、双端口设备,四端口的还在测试阶段,没有商用,八端口的我还没有见到过。目前两端口及以上设备都是既支持MIMO又支持发分集的,主要看用户在小区所处位置,当处于近点时候,覆盖较好,当然使用MIMO发送数据;当用户在远点时候,信道质量较差,一般采用发分集,来抗击干扰,当然这样吞吐量会下降。测试过程中,你可以通过读取TM参数来查询你的终端正处于那种模式。MIMOstyle里会指示目前信号传输模式,如SFBC(空频块码)则是分集模式,OLSM(开环空间复用)则是MIMO模式,终端做业务过程中,通常是两种模式共存的!
RI(Rank Indication);RANK指示。RANK为MIMO方案中天线矩阵中的秩。表示N个并行的有效的数据流。
PMI(Pre-coding matrix Indication) 预编码矩阵指示。预编码是多天线系统中的一种自适应技术,即根据信道的状态信息(CSI),在发射端自适应的改变预编码矩阵,起到改变信号经历的信道的作用。在收发两端均存储一套包含若干个预编码矩阵的码书,这样接收机可以根据估计出的信道矩阵和某一准则选择其中一个预编码矩阵,并将其索引值和量化后的信道状态信息反馈给发送端;在下一个时刻,发送端采用新的预编码矩阵,并根据反馈回的信道状态量化信息为码字确定编码和调制方式。
CQI(Channel Quality Indicator)信道质量指示。指满足某种性能(10%的BLER)时对应一个信道质量的索引值(包括当前的调制方式,编码速率及效率等信息),CQI索引越大,编码效率越高。和HSDPA中CQI的含义是一样的,只不过,在LTE中,CQI是4bit,而在HSDPA情况下,CQI是5bit。
1、 定义
2、 CQI是信道质量指示,英文全称channel quality indication,CQI由UE测量所得,所以一般是指下行信道质量。
3、 2、引入原因
4、 LTE物理共享信道(PDSCH)支持三种编码方式:QPSK、16QAM和64QAM,编码方式对应的其三种星座图,依次需要的信道条件也不相同,简单的来说,编码方式越高(QPSK<16QAM<64QAM),依赖的信道条件需要越好。由于下行调度是由eNodeB决定的,而eNodeB作为发射端,并不清楚信道条件如何,就如同一个人说话,听不听得清楚是由听众感知到的,信道质量衡量也只能由UE来完成。eNodeB要决定编码方式,就需要UE来反馈这个信道质量,协议把这个信道质量量化成0~15的序列(4bit数来承载),并定义为CQI。
HSDPA(High Speed Downlink Packet Access)高速下行分组接入,是一种移动通信协议,亦称为3.5G(3½G)。该协议在WCDMA下行链路中提供分组数据业务,在一个5MHz载波上的传输速率可达8-10 Mbit/s(如采用MIMO技术,则可达20 Mbit/s)。在具体实现中,采用了自适应调制和编码(AMC)、多输入多输出(MIMO)、混合自动重传请求(HARQ)、快速调度、快速小区选择等技术
因篇幅问题不能全部显示,请点此查看更多更全内容