您的当前位置:首页高等代数学习心得

高等代数学习心得

2023-12-14 来源:乌哈旅游

  在如今这个科学飞速发展,信息高速发达,知识爆炸的新时代,现代社会的发展对人才培养提出了更高的要求,也引发了数学教学任务和性质的根本变革。通过这学期对现代数学与中学教学课程的学习,我不仅对中学的课程内容有了更深刻的理解,对中学教学方法有了更进一步改进,还更新了旧的教学观念和教学思想,相信这些都是对我今后成长为一个好老师的宝贵指导思想。

  在课堂上,我们老师会把班里的同学分成几个组,然后大家会先一起探讨高中书本上的一些疑难点,引导我们站在更高的知识层面上来分析高中课本。在这个过程中,我们每个人都能发表自己意见,在不同意见的交流融合中,会有很多在教学内容上的奇思妙想。就比如说老师在课堂上曾经让我们探讨过这样的一个问题:是否任意一个已知有限项数列都有其通项公式,这个通项公式又是否唯一的?刚开始同学都是尝试举反面例子来进行例证如1,0,—1,0,……,它的通项公式:当n=4k—1,Bn=—1;n=4k+1时,Bn=1;其他情况,Bn=0;但除此之外我们也可以用余弦函数或正弦函数表示,由此猜想数列通项公式是不唯一的。这就为接下来的引理论证做了铺垫。最后通过缜密的逻辑可以论证猜想成立,原来我们是可以通过有限数列构造出表达式为 一元多项式的通项公式。这个探讨的过程让我认识到了高等数学课程在知识上是中学数学的继续和提高,在思想方法上是中学数学的因袭和扩张,在观念上是中学数学的深化和发展,让我深刻的感悟到了数学的魅力和神奇。下面是一些我对本课程的一些心得体会

  首先我认为:现代数学与中学数学在知识联系上是非常紧密的。初等数学是对特例、常量的研究,而高等数学是对变量的研究,所以中学数学的知识从某一程度上可以理解为高等数学的特例。可以看到现代数学和初等数学在很多知识点方面都存在着联系:第一,中学代数给出了多项式因式分解的常用方法,高等代数首先用不可约多项式的严格定义解释了不可再分的含义,接着给出了不可约多项式的性质、因式分解定理及不可约多项式在三种数域上的判定;

  第二,中学代数讲二元一次、三元一次方程组的消元解法,高等代数讲线性方程组的行列式解法,矩阵消元解法,讲线性方程组解的判定及解与解之间的关系;此外,我认为现代数学与中学数学具有思想上的统一性。众所周知“数学是思维的体操”,小学从具体事物的数量中抽象出数字,开创了算术运算的时期;中学用字母表示数,开创了在一般形式下研究数式方程的时期;大学所学的高等代数用字母表示多项式矩阵,开始研究具体的代数系统,进而又用字母表示满足一定公理体系的抽象元素,开始研究抽象的代数系统。向量空间、欧氏空间,这些都随着概念抽象化程度得不断地提高,数学研究的对象急剧扩大。从中学数学到现代数学的学习,需要学生掌握的不只是一个个知识点,更多的是数学思想方法:转化与化归思想,分类讨论思想,数形结合思想,函数与方程思想等。高等代数与中学数学虽然在知识深度上有较大差昇,但课程所体现的数学思想方法却是一脉相承的。

  总而言之,这一个学期的学习让我明白了:现代数学可以解决中学数学无法解答的问題,它有助于初等数学和高等数学的融会贯通,建立数学還緝性思維的思考方式。数学思想和数学方法是人类思维的结晶,它们支配者数学的实践活动,因此在今后的教学之路上,我不仅要做好知识的教导者,激发学生对数学的学习兴趣,更要帮助学生们建立正确的数学思想和数学方法,为他们今后在数学求知路上的进一步飞跃奠定坚实的知识基础。

因篇幅问题不能全部显示,请点此查看更多更全内容