定积分的结构是:定(上下结构)积(左右结构)分(上下结构)。
定积分的拼音是:dìng jī fēn。注音是:ㄉ一ㄥˋㄐ一ㄈㄣ。网络解释是:定积分定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。英语是:definite integral、definite integration、indefinite integral。汉语大词典是:微积分的重要概念。德国数学家黎曼首先给予严格表述,故又称“黎曼积分”。设函数f(x)在[a,b]上有界,把区间[a,b]任意分成n个小区间[x0,x1],[x1,x2],…[xn-1,xn],各个小区间的长度为δxi=xi-xi-1(i=1,2,…,n)。在每个小区间上任取一点ξi作和s=σni=1f(ξi)δxi,记λ=max{δx1,δx2,…,δxn},若不论对[a,b]怎样分法,也不论在小区间[xi-1,xi]上点ξi怎样取法,只要当λ→0时,和s总趋于确定的极限i,则称极限i为函数f(x)在区间[a,b]上的定积分,记作∫baf(x)dx,其中f(x)称为被积函数,x称为积分变量,a、b分别称为积分下限和上限,[a,b]称为积分区间。
定积分的具体解释是什么呢,我们通过以下几个方面为您介绍:
一、词语解释 【点此查看定积分详细内容】
定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。定积分(定積分)[dìngjīfēn]⒈微积分的重要概念。德国数学家黎曼首先给予严格表述,故又称“黎曼积分”。设函数f(x)在[a,b]上有界,把区间[a,b]任意分成n个小区间[x0,x1],[x1,x2],…[xn-1,xn],各个小区间的长度为δxi=xi-xi-1(i=1,2,…,n)。在每个小区间上任取一点ξi作和s=σni=1f(ξi)δxi,记λ=max{δx1,δx2,…,δxn},若不论对[a,b]怎样分法,也不论在小区间[xi-1,xi]上点ξi怎样取法,只要当λ→0时,和s总趋于确定的极限i,则称极限i为函数f(x)在区间[a,b]上的定积分,记作∫baf(x)dx,其中f(x)称为被积函数,x称为积分变量,a、b分别称为积分下限和上限,[a,b]称为积分区间。
二、网络解释
定积分定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。
三、汉语大词典
微积分的重要概念。德国数学家黎曼首先给予严格表述,故又称“黎曼积分”。设函数f(x)在[a,b]上有界,把区间[a,b]任意分成n个小区间[x0,x1],[x1,x2],…[xn-1,xn],各个小区间的长度为δxi=xi-xi-1(i=1,2,…,n)。在每个小区间上任取一点ξi作和s=σni=1f(ξi)δxi,记λ=max{δx1,δx2,…,δxn},若不论对[a,b]怎样分法,也不论在小区间[xi-1,xi]上点ξi怎样取法,只要当λ→0时,和s总趋于确定的极限i,则称极限i为函数f(x)在区间[a,b]上的定积分,记作∫baf(x)dx,其中f(x)称为被积函数,x称为积分变量,a、b分别称为积分下限和上限,[a,b]称为积分区间。
四、关于定积分的成语
五、关于定积分的词语
六、关于定积分的造句
1、好吧,现在我们已经得到大部分的基本积分的方式进行,让我们做一些不定积分。
2、应注意的是,任何常数的值可以加入不定积分,而不改变它的导数。
3、首先证明二元插值函数的不定积分也是由迭代函数系迭代生成的,并得到了其迭代函数系。
4、在证明了定积分不等式等性质的基础上,给出并证明了积分中值定理的中值在开区间内取得的结论。
5、本文利用定积分的性质、微分中值定理、施瓦兹不等式、二重积分等内容,研究了积分不等式的四种证法。
6、本文指出了高等数学教科书中,不定积分的一个线性性质的条件及其证明的错误,并给出正确的证明。