求解高等数学题。求不定积分 ∫﹙㏑x﹚²dx 和∫cos﹙㏑x﹚dx

发布网友 发布时间:2024-10-24 12:11

我来回答

3个回答

热心网友 时间:2024-10-31 11:06

∫﹙㏑x﹚²dx
=(㏑x)²*x-∫x*2㏑x*(1/x)dx
=x(㏑x)²-2∫㏑xdx
=x(㏑x)²-2[x㏑x-∫x*(1/x)dx]
=x(㏑x)²-2x㏑x+2∫dx
=x(㏑x)²-2x㏑x+2x+C

∫cos﹙㏑x﹚dx
=∫cos(㏑x)dx
=x*cos(㏑x)-∫x*[-sin(㏑x)]*(1/x)dx
=xcos(㏑x)+∫sin(㏑x)dx
=xcos(㏑x)+[x*sin(㏑x)-∫xcos(㏑x)*(1/x)dx]
=xcos(㏑x)+xsin(㏑x)-∫cos(㏑x)dx
移项合并
=(x/2)[cos(㏑x)+sin(㏑x)]

热心网友 时间:2024-10-31 11:03

∫﹙㏑x﹚²dx =x﹙㏑x﹚² -∫xd﹙㏑x﹚²= x﹙㏑x﹚² -2∫x﹙㏑x﹚(1/x)dx
=x﹙㏑x﹚² -2∫㏑xdx=x﹙㏑x﹚² -2x(lnx-1)+c

∫cos﹙㏑x﹚dx=xcos﹙㏑x﹚-∫xdcos﹙㏑x﹚
=xcoslnx+∫xsin﹙㏑x﹚(1/x)dx
=xcoslnx+∫sin﹙㏑x﹚dx
=xcoslnx+xsinlnx-∫xcos﹙㏑x﹚(1/x)dx
=xcoslnx+xsinlnx-∫cos﹙㏑x﹚dx
∫cos㏑xdx=(1/2)x(coslnx+sinlnx)+c

热心网友 时间:2024-10-31 11:05

利用分部积分

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com