x-2=(x-1)(x-2),运用了什么方法分解因式

发布网友 发布时间:2天前

我来回答

1个回答

热心网友 时间:2天前

x²-3x+2因式分解为:x²-3x+2 =x×x+(-2-1)x+2×1 =(x-1)(x-2),运用了十字相乘法。

把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。

因式分解主要有十字相乘法,待定系数法,双十字相乘法、解方程法、配方法、分组分解法等。

1、提公因式法

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。公因式可以是单项式,也可以是多项式。

例: 

2、公式法

如果把乘法公式的等号两边互换位置,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫做公式法。

分解公式:

(1)平方差公式:即两个数的平方差,等于这两个数的和与这两个数的差的积。

(2)完全平方公式:即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和 (或差)的平方。

(3)立方和公式:即两数之和,乘它们的平方和与它们的积的差,等于这两个数的立方和。

(4)立方差公式:即两数之差,乘它们的平方和与它们的积的和,等于这两个数的立方差。

(5)完全立方公式:即两数之和(差)的立方等于这两个数的立方和(差)与每一个数的平方乘以另一个数3倍的和(和与差)。

2、十字相乘法

对于  型的式子如果  能分解为分解为数  的积,且有  时(即a与b和是一次项

的系数),那么  ;或对于  型的式子如果有  ,

 ,且有  时,那么  。这种分解因式的方法叫做十字

相乘法。

具体方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。

3、双十字相乘法

对于某些二元二次六项式  (x、y为未知数,其余都是常数),用两次十字相乘法分解因式,这种分解因式的方法叫做双十字相乘法。

4、解方程法

通过解方程来进行因式分解的方法叫做解方程法。

例:把x2-6x+8=0 分解因式

解:原方程解得x1=2,x2=4,就得到原式=(x-2)(x-4)

5、配方法

对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种分解因式的方法叫做配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。

例:分解因式x2+3x-40

解:x2+3x-40

=x2+3x+2.25-42.25

=(x+1.5)2-(6.5)2

=(x+8)(x-5).

6、分组分解法

通过分组分解的方式来分

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com