您的当前位置:首页2011远程教育培训初中数学作业

2011远程教育培训初中数学作业

来源:乌哈旅游
课程1:《初中思想方法与初中数学教学》的作业:

1试述思想方法在初中数学中的作用,在教学中你是如何渗透转化、分类讨论思想和数形结合思想的,请各举一教学片段说明。

在教学中教师要做一个“渗透”的有心人,把数学思想方法渗透到我们的数学知识教学的每一个环节。以数学知识为载体,把藏于知识背后的思想方法显示出来,作为教学的一个需要完成的的目标,使之明朗化,这样才能通过知识传授过程达到思想方法教学之目的。

一、渗透转化思想,提高学生解决问题的能力

所谓“转化思想”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。转化思想是初中数学中常见的一种数学思想,它的应用十分广泛,我们在数学学习过程中,常常把复杂的问题转化为简单的问题,把生疏的问题转化为熟悉的问题。数学问题的解决过程就是一系列转化的过程,转化是化繁为简,化难为易,化未知为已知的有力手段,是解决问题的一种最基本的思想,对提高学生分析解决问题的能力有积极的促进作用。

例如,在研究多边形内角和定理时,可向学生提出:我们已经知道三角形的内角和等于180°,那么,你能根据三角形的内角和求出四边形的内角和吗?这样简单、明了的一句话就勾通了新旧知识间的内在联系。问题的提出,激发了学生学习的兴趣,促使了学生思维的展开,提供了回答问题的机会,创造了活跃的教学气氛,学生会准确地回答出四边形的内角和等于360°。又问:你是根据什么说四边形的内角和等于360°呢?是猜想的?还是推理得到的?学生的回答是作四边形的对角线,将四边形分为两个三角形,而每个三角形的内角和等于180°,两个三角形的内角和等于360°。教师马上对学生的回答给以肯定和鼓励,再问:五边形、六边形的内角和等于多少度?学生很快就会回答出五边形的内角和等于540°,六边形的内角和等于720°。接着又问:你知道十边形、一百边形、一千边形的内角和是多少度吗?这是老师故意设置“知识障碍”,激发学生的求知欲望。及时引导、启发、迁移、总结规律。让学生观察、发现求四边形、五边形、六边形的内角和,都是从它们的一个顶点作对角线将它们转化为三角形来求得的,并且内角和是由从它们的一个顶点作对角线所分得三角形的个数确定的,而三角形的个数又是由这个多边形的边数确定的。从而可知从n边形的一个顶点作对角线可将n边形分成(n-2)个三角形,所以n边形的内角的和等于(n-2)·180°,即得多边形的内角和定理。

这个定理的出现,是教者通过设疑、引导、启发学生思维,寻求解题方法,由个性问题追朔到共性问题,总结出了一般规律。这样做,不但使学生学会了在原有知识基础上学习新知识的方法,又培养了学生分析问题和解决问题的能力,还渗透了把多边形转化为三角形来研究的数学转化思想。

二、渗透数形结合的思想方法,提高学生的数形转化能力和迁移思维的能力

一般地,人们把代数称为“数”,而把几何称为“形”,数与形表面看是相互独立,其实在一定条件下它们可以相互转化,数量问题可以转化为图形问题,图形问题也可以转化为数量问题。在数学教学中,由数想形,以形助数的数形结合思想,具有可以使问题直观呈现的优点,有利于加深学生对知识的识记和理解;在解答数学题时,数形结合,有利于学生分析题中数量之间的关系,丰富表象,引发联想,启迪思维,拓宽思路,迅速找到解决问题的方法,从而提高分析问题和解决问题的能力。抓住数形结合思想教学,不仅能够提高学生数形转化能力,还可以提高学生迁移思维能力。

数和形是初中数学中被研究得最多的对象,数形结合是一种极富数学特点的信息转换,它通过形理解数,利用形的直观加深对数量关系的理解;通过数理解形,利用数的抽象性加深对图形位置关系的理解,即图形位置问题的坐标化,数量关系图形化。

例如、已知正比例函数ykx的图象与反比例函数y图象有一个交点的横坐标是2. ⑴求两个函数图象的交点坐标;

⑵若点A(x1,y1),B(x2,y2)是反比例函数y5k(k为常数,k0)的x5k图象上的两点,且x1x2,试比较xy1,y2的大小.

y2k5k分析与解答:(1)由交点横坐标的含义可得方程组,5k消去字母y,得2ky224

解得k1.所以正比例函数的表达式为yx,反比例函数的表达式为y.要求两个

x

4

函数图象的交点坐标,只须在得出的函数解析式基础上画出图象(反比例函数y的图象

x

分别在第一、三象限内的双曲线,正比例函数yx的图象是经过原点的一条直线)由题知

交点的横坐标是2即可求出纵坐标也是2即为(2,2),由图象的关于原点成中心对称可得另一交点为(2,,(2,2).所以两函数图象交点的坐标为(2,2)2).

4

的图象的y的值随x值的增大而减小,所以x

40,当x1x20时,y1y2.当0x1x2时,y1y2.当x10x2时,因为y1x14y20,所以y1y2.

x2(2)利用上问中所画图形得反比例函数y

借助“形”的几何直观来阐明“数”之间的某种关系能使问题简单。这类问题常把函数、方程、不等式联系起来.

三、渗透分类讨论的思想方法,培养学生全面观察事物、灵活处理问题的能力。

当被研究的问题包含多种可能的情况不能一概而论时,就要按照可能出现的各种情况进行分类讨论,从而得出各种情况下的结论,这种处理问题的思维方法就是分类讨论思想。

在渗透分类讨论思想的过程中,我认为首要的是分类。要能培养学生分类的意识,然后才能在其基础上进行讨论。我们仔细分析教材的话应该不难发现,教材对于分类的渗透是一直坚持而又明显的。比如在《有理数》研究相反数、绝对值、有理数的乘法运算的符号法则等都是按有理数分成正数、负数、零三类分别研究的:在研究加、减、乘、除四种运算法则也是按照同号、异号、与零运算这三类分别研究的;而在《平面图形的认识(一)》一章中,用分类讨论思想进行了角的分类、点和直线的位置关系的分类、两条直线位置关系的分类,在《函数》知识里将函数图象分为开口方向向上、向下,单调递增、递减来进行研究。在《圆》中按圆心距与两圆半径之间的大小关系将两圆的位置关系分成了六类。在功用上这种思想方法主要可以避免漏解、错解,而在学生的思维品质上则有利于培养学生的思维严谨性与逻辑性。

我认为在渗透分类讨论思想的时候,我们还可以从学生已有的生活经验出发,紧密联系学生的生活实际、学习实际。比如在讲解“同类项”这个概念时,可出示导入题为:

把下面这些实际进行分类:

蛋筒、菠萝、棒冰、萝卜、菜椒、香蕉、白菜。

在分类的时候鼓励学生按多种类别进行分类,可以进行讨论交流。学生在尝试按种类、颜色等多种方法进行分类后,就可以非常自然的引出同类项这个概念了。学生尝试按种类、颜色等多种方法进行分类,一方面可提供学生主动参与的机会,把学生的注意力和思维活动调节到积极状态,另一方面可培养学生思维的灵活性,加速体现了分类的思想方法。

在《平面图形的认识(一)》这一章中有这样一道题:已知平面上三个点A、B、C,过其中每两点画直线共可以画几条?若平面上A、B、C、D四点呢?试分别画图说明。

分析:过平面上三点画直线有两种情况:(1)三点共线时,只能画一条直线;(2)三点不共线时,可画三条直线;过平面上四点画直线有三种情况:(1)四点共线时,只能画一条直线;(2)四点中有三点共线时,可画四条直线;(3)四点中任意三点都不共线时,可画六条直线。

再如例3:已知a=3,b=2,求a+b的值。 解∵a=3,b=2,

∴a=3或a=-3,b=2或b=-2。

因此,对于a、b的取值,应分四种情况讨论。当a=3,b=2或a=3,b=-2或a=-3,b=2或a=-3,b=-2时,分别求出a+b的值为5;1;-1;-5。

这些题目都能很好的体现分类思想,在平时的训练中,我们要多通过这类题的解答,渗透着分类讨论的思想。通过分类讨论,既能使问题得到解决,又能使学生学会多角度、多方面去分析、解决问题,从而培养学生思维的严密性、全面性。

如果说数学教学是一门艺术,那么在教学中渗透数学思想方法更是艺术中的艺术

因篇幅问题不能全部显示,请点此查看更多更全内容