2所以fx的最小正周期为T25xk,kZ,(II)令2k2x2k,kZ,得k
23212127
,由x0,,得fx在0,上单调递增区间为0,,
1212
解:(I)fx
19.(本题满分15分)b2c2a23bc31
解:(I)由余弦定理得,cosA,2bc2bc2又因为A0,,所以A
3ba32
(II)由正弦定理得,sinBsinA,即b2sinB,sin
321
bsinC2sinBsinC2sinBsinBsin2B所以,,632
72
2B,,由B0,,得
6663
3
所以,当2B,即B时,bsinC的最大值为6232120.(本小题满分15分)解:(I)由a4a13d2,和S2121a1210d252,解得a18,d2,所以an102n,nN
(II)当1n5时,TnSn9nn2,当n6时,TnSn2S5n29n40,所以T9nn2,1n5,nn29n40,n6.21.(本小题满分15分)解:(I)由已知得S1BCD
2BCBDsinB33,又BC2,sinB3,得BD23。BCD2在中,由余弦定理得,2CD2222127,3
22323所以CD的长为273。(II)因为CDAD
DE6sinA
2,在BCD中,由正弦定理得BCsinAsinBDCCD
sinB,26又BDC2A,得sin2A
2sinAsin
,3解得cosA22,又A0,,所以A4即为所求。222.(本小题满分15分)解:(Ⅰ)anSn4中,令n1,得a1a14,又a14,解得2,a2an12anan1n12,2an1Sn14相减得,由2anSn4,数列an是以a14,an公比为2的等比数列,可得an2n1(nN*)(Ⅱ)bn11111nn1(n1)(n2)n1n2logaloga22
11111111nT所以n
2334n1n22n22(n2)n1n2n1由12n5Tnk0对任意nN*恒成立,n2n112n5得k对任意nN*恒成立n2n112n5记fn,nN
n252n
.(1)当n为偶数时,fnn21
若n4,则fn0,又f2,41
所以fnmaxf2
42n5
.(2)当n为奇数时,fnn2196n
.故fn2fn
2n2若n5,n为奇数,则fn2fn,即f5f7f9,若n3,n为奇数,则fn2fn,即f5f3f1.5
所以fnmaxf5,321
综合(1)(2)知fnmaxf2.41
所以k.43
因篇幅问题不能全部显示,请点此查看更多更全内容