您的当前位置:首页北师大版完整版小学五年级数学下册应用题100道(全) 及答案

北师大版完整版小学五年级数学下册应用题100道(全) 及答案

2020-10-29 来源:乌哈旅游
北师大版完整版小学五年级数学下册应用题100道(全) 及答案

一、北师大小学数学解决问题五年级下册应用题

1.某工厂用一批钢材做零件,每个零件用钢4.5kg,可做160个,改进技术后,每个零件节约用钢1.3kg,改进技术后,这批钢材可做多少个零件?(用方程解)

2.玲玲家有一个长方体的玻璃鱼缸,长8dm,宽4dm,高6dm。

(1)制作这个鱼缸至少需要多少玻璃?【鱼缸上面没有玻璃】

(2)鱼缸里原来有一些水,放入4个同样大的装饰球后(如右图),水面上升了0.05dm。每个装饰球的体积是多少dm3?

3.少年宫和学校相距800米。小童和小乐分别从少年宫和学校门口同时向相反方向走去(如下图),7分钟后两人相距1360米。小童每分钟走37米。小乐每分钟走多少米?(列方程解)

4.某公司订购400根方木,每根方木横截面的面积是25平方分米,长是4米,这些木料一共有多少方?(1方=1立方米)

5.有一辆沙土车,每次运沙土1.6m3 , 如果要在长为43m,宽为15m的长方形地上铺一层厚为4cm的沙土,铺地共需沙土多少立方米?这些沙土至少要运几次?

6.有4个棱长是3dm的正方体礼品盒,现在要把它们用包装纸包装起来,有如下两种方案(如下图)。

(1)哪种方案能节省包装纸? (2)至少需要多少平方米的包装纸?

7.红铅笔每支1.9元,蓝铅笔每支1.1元,两种铅笔共买了16支,花了28元。问:红、蓝铅笔各买了几支?

8.书架有两屠,上层的图书本数是下层的1.5倍,如果从上层拿10本书到下层, 那么两层的图书本数一样多。原来书架的上、下层各有多少本图书?

9.现有空的长方体容器A和水深24厘米的长方体容器B(如图),要将容器B的水倒一部分给A,使两容器水的高度相同,这时水深是几厘米?

10.有两袋大米,甲袋大米的质量是乙袋大米的1.2倍。若从甲袋往乙袋倒4kg大米,则两袋大米一样重。原来两袋大米各有多少千克?(用方程解答)

11.有一块长32cm,宽16cm的长方形铁皮,通过折、割或焊等方法做出一个高为4cm的无盖长方体盒子,使这个盒子的容积尽可能的大,你会怎样设计?请画出示意图。

(1)我的设计是:长________cm,宽________cm,高4cm。 (2)我画的示意图: (3)请列式计算出它的容积:

12.如图,计算这块空心砖的表面积。(单位:厘米)

13.求组合体的体积(单位:米)

14.果园里有桃树和梨树共420棵,梨树的棵数比桃树的3倍还少20棵,果园里有桃树、梨树各多少棵?

15.甲、乙两人赛跑,甲的速度是7米/秒,乙的速度是5.5米/秒,甲在乙后面15米,两

人同时同向起跑,问甲经过几秒追上乙?

16.成渝高速路长330千米,一辆大客车从重庆开往成都,一辆小轿车同时从成都开往重庆.2小时在途中相遇,已知小轿车的速度是大客车的1.2倍.两车每小时各行多少千米? 17.5个棱长都是10cm的正方体纸箱堆放在墙角处(如下图)。露在外面的面积是多少平方厘米?

18.一个长方体罐头盒,长12厘米,宽8厘米,高10厘米。

(1)在它的四周贴上商标纸,这张纸的面积至少是多少?(接缝处不计)

(2)小明打开罐头后吃了一些,现在盒内罐头只剩下2厘米高了,小明吃了多少立方厘米的罐头?(罐头盒厚度不计,食物装满状态)

19.一个长方体高24厘米,平行于底面截成三个长方体后,表面积比原来增加了120平方厘米,原来长方体的体积是多少立方厘米? 20.你能把宣传栏上破损的数补上吗?(用方程解)

21.姐妹俩同时从家出发去少年宫,妹妹步行每分钟走65米,姐姐骑车每分钟行155米。姐姐到达少年宫立即返回,途中与妹妹相遇,她们从出发到相遇共用了5分钟。她们家距少年宫有多少米?

22.一个养殖场一共养鸡680只,其中母鸡的只数是公鸡的2.4倍。公鸡和母鸡各有多少只?

23.一个长是8cm,宽是5cm的长方体木块,体积是120cm3。

(1)这个长方体的高是________cm。

(2)如果从这个长方体木块中截取一个最大的正方体,正方体的体积是原长方体体积的几分之几?

(3)这个长方体木块最多能截取( )个像上面(2)题中一样的正方体,截完后原来长

方体剩余木块的表面积是多少平方厘米? 24.看图计算下图的表面积和体积。(单位:cm)

表面积: 体积:

25.一个长方体,如果高增加3厘米,就成为一个正方体。这时表面积比原来增加了96平方厘米,原来的长方体的体积是多少立方厘米?

26.一个长方体玻璃容器,从里面量长、宽均是2dm,向容器中倒入5L水,再把一个土豆放入水中。这时量得容器内的水深13cm。这个土豆的体积是多少?

27.一杯纯牛奶,乐乐喝了半杯后,觉得有些凉,就兑满了热水。他又喝了半杯,就出去玩了。乐乐一共喝了多少杯纯牛奶?多少杯水?

28.乐乐家新买了一个长方体的鱼缸,鱼缸长8分米,宽4分米,高6分米,注入4分米深的水,然后放入一个假山,假山完全浸没在水中,这时水面距缸口1.4分米。这个假山的体积是多少立方分米?

29.一个长20cm、宽15cm、高8cm的长方体木块,每次都从这个木块中锯下一个最大的正方体。锯三次后,剩下的体积是多少?

30.下图是一个长方体纸盒的展开图,计算立体图形的表面积和体积。(单位:cm)

31.一块方钢长80厘米,横截面是边长3厘米的正方形,如果每立方厘米的钢重7.8克,这块方钢共重多少千克?

32.一次数学竞赛共有20道题,做对一道题得5分,做错或不做一道题倒扣3分,刘冬

考了52分,刘冬做对了几道题。

33.将四个大小相同的正方体粘成一个长方体(如图)后,表面积减少54平方厘米,求长方体的表面积和体积。

34.一个长10cm,宽10cm的长方体容器中有一些水,水深8.5cm。小明将一块石头放入这个容器中,并完全浸没在水中,这时量得水深10cm。这块石头的体积是多少立方厘米? 35.爱心书屋里的科技书的本数是故事书的1.5倍,科技书的本数比故事书多240本。科技书和故事书各有多少本?(用方程解)

36.一个长方体玻璃容器,底面是边长2分米的正方形,向容器中倒进6升的水,再把一个西瓜放进水中,这时水面高度是25厘米(水没有溢出),这个西瓜的体积是多少? 37.一种盒装纸巾的长、宽、高(如图1)所示。用塑料包装纸将3盒这样的纸巾包装起来(如图2),至少需要多少平方厘米的塑料包装纸?(接头处忽略不计)

38.一个长方体水箱,从里面量长是40cm,宽是35cm,水箱中浸没一个钢球(水未溢出),水深15cm。取出钢球后,水深12cm。这个钢球的体积是多少立方厘米? 39.一种盒装纸巾长20cm,宽10cm,高12cm。想要把2盒纸巾包装在一起,最少需要多少平方厘米包装纸?

40.要测量一块不规则的岩石标本的体积,实验小组的同学先将1L水倒进一个长方体水箱,量得水深8cm,然后将岩石标本完全浸没在水中,这时水深13cm。请你利用观察到的数据计算岩石标本的体积。

【参考答案】***试卷处理标记,请不要删除

一、北师大小学数学解决问题五年级下册应用题

1. 解:设改进技术后,这批钢材可做x个零件。

(4.5-1.3)x=4.5×160 3.2x=720

x=720÷3.2 x=225

答: 改进技术后,这批钢材可做225个零件.

【解析】【分析】等量关系: 改进技术后,每个零件用钢的质量×做的零件个数=改进技术前,每个零件用钢的质量×做的零件个数,根据等量关系列方程,根据等式性质解方程。 2. (1)解:8×4+8×6×2+4×6×2 =32+96+48 =176(平方分米)

答:制作这个鱼缸至少需要176平方分米玻璃。 (2)解:8×4×0.05÷4 =8×0.05 =0.4(立方分米)

答:每个装饰球的体积是0.4立方分米。

【解析】【分析】(1)底面面积+前后两个面的面积+左右两个面的面积=制作这个鱼缸至少需要的玻璃面积;

(2)鱼缸的长×宽×水面上升的高度=4个装饰球的体积;4个装饰球的体积÷4=每个装饰球的体积。

3. 解:设小乐每分钟走x米。 列方程,得:37×7+7x=1360-800 259+7x=560 7x=301 x=43 答:小乐每分钟走43米。

【解析】【分析】小童的速度×时间+小乐的速度×时间=两人在7分钟内一共走的距离,两人在7分钟内一共走的距离=两人相距的距离-少年宫和学校的距离,据此列出方程,解答即可。

4. 25平方分米=0.25平方米 0.25×4×400=400(立方米)=400(方) 答:这些木料一共有400方。

【解析】【分析】1根方木体积=方木横截面的面积×长,1根方木体积×400根=400根方木体积。

5. 解:4cm=0.04m 43×15×0.04=25.8(m3) 25.8÷1.6≈17(次)

答:铺地共需沙土25.8立方米,这些沙土至少要运17次。

【解析】【分析】根据单位换算将cm换算成m(除以进率100即可),根据长方体的体积=长×宽×高(厚),计算出沙土的体积,再用沙土的体积除以每次运送沙土的体积即可得出运送沙土的次数(注意最后要是整数)。

6. (1)解:方案A减少了4×2=8个面,方案B减少了6个面, 因为8>6,

所以方案A能节省包装纸。

(2)解:方案A:长方体的长3×2=6dm,宽为3dm,高为3×2=6dm, (6×3+6×6+3×6)×2 (18+36+18)×2 =72×2 =144(dm2)。 144dm2=1.44m2。

答:至少需要1.44平方米的包装纸。

【解析】【分析】(1)分别观察方案A和方案B,可得方案A减少了8个面,方案B减少了6个面,即可得出减少面数量多的节省包装纸;

(2)方案A中长方体的长3×2=6dm,宽为3dm,高为3×2=6dm,再根据长方体的表面积=(长×宽+长×高+宽×高),代入数值计算即可。 7. 解:设红铅笔买了x支,蓝铅笔买了(16-x)支。 1.9x+(16-x)×1.1=28 1.9x+17.6-1.1x=28 0.8x=28-17.6 0.8x=10.4

x=10.4÷0.8 x=13 16-13=3(支)

答:红铅笔买了13支,蓝铅笔买了3支。

【解析】【分析】此题属于鸡兔同笼问题,用列方程的方法解答比较容易理解。设红铅笔买了x支,蓝铅笔买了(16-x)支。等量关系:红铅笔的总价+蓝铅笔的总价=28元,根据等量关系列方程,解方程求出红铅笔的支数,进而求出蓝铅笔的支数即可。 8. 解:设下层有x本图书,那么上层有1.5x本图书。 1.5x-10=x+10 0.5x=20 x=40 40×1.5=60(本)

答:原来书架的上层有60本图书,下层有40本图书。

【解析】【分析】本题可以用方程作答,即设下层有x本图书,那么上层有1.5x本图书,那么题中存在的等量关系是:上层有图书的本数-上下两层一样多时上层拿到下层的图书的本数=下层有图书的本数+上下两层一样多时上层拿到下层的图书的本数,据此代入数据和字母作答即可。

9. 解:30×20×24÷(40×30+30×20) =30×20×24÷(1200+600) =30×20×24÷1800 =600×24÷1800

=14400÷1800 =8(厘米)

答:这时水深是8厘米。

【解析】【分析】根据题意可知,先求出长方体容器B内水的体积,长方体容器B内水的体积=长×宽×水的深度,据此列式计算;

然后用长方体容器B内的体积÷两个长方体的底面积之和=水的深度,据此列式解答。 10. 解:设乙袋大米有x千克,则甲袋大米有1.2x千克, 1.2x-4=x+4 1.2x-4-x=x+4-x 0.2x-4=4 0.2x-4+4=4+4 0.2x=8 0.2x÷0.2=8÷0.2 x=40

甲袋:40×1.2=48(千克)

答:甲袋有48千克,乙袋有40千克。

【解析】【分析】此题主要考查了列方程解答应用题,设乙袋大米有x千克,则甲袋大米有1.2x千克,用甲袋大米的质量-4=乙袋大米的质量+4,据此列方程解答。 11. (1)24;8

(2)解:

(3)解:32-2×4=24(cm) 16-2×4=8(cm) 24×8×4=768(cm3) 答:它的容积是768cm3。

【解析】【解答】解:(1)长:32-4×2=24(cm),宽:16-4×2=8(cm)

(2)

(3)24×8×4=768(cm3)

【分析】这个无盖长方体的长,是在原来长方形的两端各剪去一个4cm,长方体的宽,是在原来长方形宽的两端各剪去一个4cm,这样就相当于在原来长方形的四个角剪去了边长是4cm的小正方形,这个长方体的体积=长×宽×高。

12. 解:(40×30+30×25+40×25)×2-12×10×2+(12+10)×25×2=6760(平方厘米) 答:这块空心砖的表面积是6760平方厘米。

【解析】【分析】先计算出大长方体的表面积,然后减去两个长12厘米、宽10厘米的长方形的面积,最后加上空心部分四周的面积即可.

13. 解:40×30×25-8×30×10=27600(立方米)

【解析】【分析】从图中可以看出,这个组合体是一个大长方体减去一个小长方体,小长方体的长是大长方体的宽,小长方体的宽是8,高是10;长方体的体积=长×宽×高。据此作答即可。

14. 解:设桃树有x棵,那么梨树有(3x-20)棵。 3x-20+x=420 x=110 3x-20=3×110-20=310

答:果园里有桃树110棵,梨树310棵。

【解析】【分析】本题可以用方程作答,即设桃树有x棵,那么梨树有(3x-20)棵,题中存在的等量关系是:梨树的棵数+桃树的棵数=果园里一共有树的棵数,据此代入数据和字母作答即可。

15. 解:设甲经过几秒追上乙。 5.5x+15=7x x=10

答:甲经过10秒追上乙。

【解析】【分析】本题可以用方程作答,即设甲经过几秒追上乙,题中存在的等量关系是:乙的速度×甲追上乙用的时间+甲和乙之间的距离=甲的速度×甲追上乙用的时间,据此代入数据和字母作答即可。

16. 解:设大客车每小时行x千米,则小轿车每小时行1.2x千米。 (1.2x+x)×2=330 2.2x×2=330 4.4x=330

x=330÷4.4 x=75 75×1.2=90(千米)

答:大客车每小时行75千米,小轿车每小时行90千米。

【解析】【分析】本题属于相遇问题,等量关系:(大客车的速度+小客车的速度)×行驶时间=行驶路程,根据等量关系列方程,根据等式性质解方程。

17. 解:观察几何体得:从上面可以看到4个正方形面,从前面可以看到3个正方形面,从右面可以看到4个正方形面,所以露在外面的面一共有:4+3+4=11(个),则露在外面的面积:10×10×11=1100(平方厘米)。 答:露在外面的面积是1100平方厘米。

【解析】【分析】先从不同的方向观察几何体,得到每个方向看到的正方形面的数量,从而求得露在外面的正方形面的数量,再根据“露在外面的面积=棱长×棱长×露在外面的正方形面的数量”,代入数据解答即可。 18. (1)(12×10+10×8)×2 =(120+80)×2 =200×2

=400(平方厘米)

答:这张纸的面积至少是400平方厘米。 (2)12×8×(10-2) =96×8

=768(立方厘米)

答:小明吃了768立方厘米的罐头。

【解析】【分析】(1)四周四个面都是长方形,分别是长12厘米、宽10厘米的面两个,长10厘米、宽8厘米的面两个;计算出四个面的面积就是这张纸的面积;

(2)小明吃罐头的高度是(10-2)厘米,根据长方体体积公式,用长乘宽再乘吃罐头的高度即可求出小明吃罐头的体积。 19. 解:120÷4×24 =30×24

=720(立方厘米)

答:原来长方体的体积是720立方厘米。

【解析】【分析】沿着平行于底面截成三个长方体后,表面积比原来增加了4个横截面的面积,平均每个横截面的面积(原来长方体的底面积)=表面积增加的总面积÷4,长方体的体积=底面积×高,代入数值计算,据此解答即可。 【解析】【分析】等量关系:我国省级行政区总数× 方程,根据等式性质解方程。 20. 解:设梯形的高是x米。 (95+117)×x÷2=5830 (95+117)×x=5830×2 (95+117)×x=11660 212x=11660 x=11660÷212 x=55 答:梯形的高是55米。

【解析】【分析】等量关系:(梯形的上底+下底)×高÷2=梯形面积;根据等量关系列方程,根据等式性质解方程。

21. 解:设她们家距少年宫有x米,则 2x=(65+155)×5 2x=220×5 2x=1100 2x÷2=1100÷2 x=550

答:她们家距少年宫有550米。

【解析】【分析】设她们家距少年宫有x米,分析题意可得姐姐和妹妹两人行驶的总路程(两人的速度和×行驶的时间)=她们家距少年宫距离的2倍,则可列出方程2x=(65+155)×5,根据等式的基本性质求解即可。 22. 解:设公鸡有x只,则母鸡有2.4x只,

=6个省级行政区;根据等量关系列

x+2.4x=680 3.4x=680 3.4x÷3.4=680÷3.4 x=200

母鸡:200×2.4=480(只)

答:公鸡有200只,母鸡有480只。

【解析】【分析】此题主要考查了列方程解决问题,设公鸡有x只,则母鸡有2.4x只,公鸡的只数+母鸡的只数=养殖场一共养鸡的只数,据此列方程解答。 23. (1)3

(2)解:3×3×3=9×3=27(立方厘米) 27÷120=

答:正方体的体积是原长方体体积的。 (3)解:8÷3=2(个)……2(厘米) 5÷3=1(个)……2(厘米) 3÷3=1(个) 2×1×1=2(个)

(8×5+8×3+5×3)×2=79×2=158(平方厘米)

答: 这个长方体木块最多能截取2个像上面(2)题中一样的正方体,截完后原来长方体剩余木块的表面积是158平方厘米。

【解析】【解答】(1)120×(8×5)=120÷40=3(厘米),所以这个长方体的高是3cm。 【分析】(1)高=体积÷(长×宽);

(2)根据正方体的特征,截取的最大的正方体的棱长是3厘米,正方体的体积=棱长3 , 求一个数是另一个数的几分之几,用除法;

(3)长8厘米里面有2个3厘米,宽厘米5里面有1个3厘米,高3厘米里面有1个3厘米;据此可得能截取的正方体的个数为(2×1×1)个,平移割补后, 剩余木块的表面积与原来长方体的表面积相同,据此解答即可。 24. 解:表面积: (12×6+12×4+6×4)×2+3×3×4 =(72+48+24)×2+36 =144×2+36 =288+36 =324(cm2) 体积:12×6×4+3×3×3 =288+27 =315(cm3)

【解析】【分析】图形的表面积是下面长方体的表面积加上上面正方体4个面的面积即可;体积是下面长方体体积加上上面正方体体积。 25. 解:设原长方体的长为x厘米,则它的宽也为x厘米。

3x×4=96 12x=96 12x÷12=96÷12 x=8

8×8×(8-3)=64×5=320(立方厘米) 答:原来的长方体的体积是320立方厘米。

【解析】【分析】表面积增加数量=长方体的长×3×4,据此列出方程,求出原长方题的长;长方体体积=长×宽×高。 26. 解:5L=5dm3 , 5÷2÷2 =2.5÷2 =1.25(分米) =12.5(厘米) 2分米=20厘米, 20×20×(13-12.5) =20×20×0.5 =400×0.5 =200(立方厘米)

答:这个土豆的体积是200立方厘米。

【解析】【分析】根据题意可知,先求出原来长方体容器里水的高度,长方体的容积÷长÷宽=长方体容器内水的深度,放入土豆后,水的深度增加,增加部分的体积就是土豆的体积,长方体的长×宽×上升的水位=土豆的体积,据此列式解答。 27. 解:纯牛奶: +× =+ =(杯) 水喝了×=(杯)

答: 乐乐一共喝了杯纯牛奶,杯水。

【解析】【分析】根据题意可知,把这杯纯牛奶的总量看作单位“1”,先喝了半杯,则喝了杯纯牛奶,剩下杯纯牛奶;然后兑满了热水,他又喝了半杯,此时喝了剩下杯纯牛奶的一半,一共喝了+×杯纯牛奶;水则喝了杯的一半,据此解答。 28. 解:8×4×(6-1.4-4) =8×4×0.6

=32×0.6

=19.2(立方分米)

答:这个假山的体积是19.2立方分米。

【解析】【分析】此题主要考查了不规则物体的体积,先求出放入假山后,水面上升的高度,然后用水面上升的高度×鱼缸的长×宽=上升部分的水的体积,也就是假山的体积,据此列式解答。

29. 解:第一次:8×8×8 =64×8 =512(cm3) 第二次:8×8×8 =64×8 =512(cm3) 第三次:7×7×7 =49×7 =343(cm3)

剩下的体积=20×15×8-512-512-343 =300×8-512-512-343 =2400-512-512-343 =1888-512-343 =1376-343 =1033(cm3)

答:剩下的体积是1033 cm3。

【解析】【分析】第一次:从长上锯一个棱长为8厘米的正方体;第二次从宽上锯一个长为8厘米的立方体;第三次宽只剩下7厘米,所以只能锯一个棱长为7的正方体,再用长方体的体积(长×宽×高)减去三个正方体的体积(棱长×棱长×棱长),代入数值计算即可。

30. 解:(30-10×2)÷2=5(cm) (10×20+20×5+10×5)×2=700(cm2) 10×20×5=1000(cm3)

【解析】【分析】长方体的长是20厘米,宽是10厘米,长方体的高=(30-2×宽)÷2;(长×宽+长×高+宽×高)×2=长方体表面积;长×宽×高=长方体体积。 31. 解:3×3×80×7.8÷1000 =9×80×7.8÷1000 =720×7.8÷1000 =5616÷1000 =5.616(千克)

答:这块方钢共重5.616千克。

【解析】【分析】根据题意可知长方体的体积=底面积×高,计算出体积后,体积× 每立方厘米的质量=总质量,关键最后要单位换算。

32. 解:设刘冬做对了x道题,则做错了(20-x)道题,可得

5x-3×(20-x)=52 5x-60+3x=52 8x-60+60=52+60 8x=112 8x÷8=112÷8 x=14

答:刘冬做对了14道题。

【解析】【分析】设刘冬做对了x道题,则做错了(20-x)道题,等量关系为“做对1道题的得分×做对的道数-做错一道题扣的分数×做错的道数=刘冬的得分”即可列出方程5x-3×(20-x)=52,根据方程的基本性质求解即可得出x的值。 33. 解:每个正方形面的面积:54÷6=9(平方厘米), 长方体表面积:9×18=162(平方厘米), 3×3=9,所以正方体棱长是3厘米, 体积:3×3×3×4=27×4=108(立方厘米)

答:长方体的表面积是162平方厘米,体积是108立方厘米。

【解析】【分析】四个正方体拼成长方体后,表面积会减少6个正方形的面的面积,所以用54除以6即可求出一个正方形面的面积。长方体的表面积共有18个小正方形面的面积,由此计算长方体表面积。根据正方形面积公式确定正方体的棱长,然后用正方体体积乘4求出长方体的体积即可。 34. 10×10×(10-8.5) =10×10×1.5 =100×1.5 =150(立方厘米)

答: 这块石头的体积是150立方厘米。

【解析】【分析】此题主要考查了不规则物体的体积计算,长方体容器的长×宽×上升的水面高度=这块石头的体积,据此列式解答。 35. 解:设故事书有x本,则科技书有1.5x本, 1.5x-x=240 0.5x=240 0.5x÷0.5=240÷0.5 x=480

科技书:480×1.5=720(本)

答:科技书有720本,故事书有480本。

【解析】【分析】此题主要考查了列方程解决问题,设故事书有x本,则科技书有1.5x本,科技书的本数-故事书的本数=240,据此列方程解答。 36. 6升=6立方分米 6÷(2×2)=6÷4=1.5(分米) 25厘米=2.5分米 2.5-1.5=1分米

2×2×1=4×1=4(立方分米)

答:这个西瓜的体积是4立方分米。

【解析】【分析】先计算出倒入6升水后容器中水面的高度=水的体积(升化成立方分米)÷容器的底面积(边长×边长),再用放入西瓜后水面的总高度(将厘米化成分米)减去倒入6升水后容器中水面的高度,计算出水面升高的分米数,再用长方体的底面积(边长×边长)×水面升高的分米数即可计算出西瓜的体积。 37. 解:8×3=24(cm) (21×10+21×24+10×24)×2 =(210+504+240)×2 =954×2

=1908(平方厘米)

答:至少需要1908平方厘米的塑料包装纸。

【解析】【分析】观察图可知,先求出现在的长方体的高,然后用公式:长方体的表面积=(长×宽+长×高+宽×高)×2,据此列式解答。 38. 解:h=15-12=3 cm 40×35×3=4200cm3

答:这个钢球的体积是4200立方厘米。

【解析】【分析】这个钢球的体积=水箱的长×水箱的宽×取出钢球后的高度差,其中取出钢球后的高度差=取出钢球前水的深度-取出钢球后水的深度,据此代入数据作答即可。 39. 包装后的高:10+10=20(厘米)

包装后的表面积:(20×20+20×12+20×12)×2=880×2=1760(平方厘米) 答: 最少需要1760平方厘米包装纸 .

【解析】【分析】把最大的面叠放在一起,表面积最小,用的包装纸最少;(长×宽+长×高+宽×高)×2=长方体表面积,据此解答。 40. 解:1L=1dm3=1000cm3 1000÷8=125(cm2) 125×(13-8)=625(cm3) 答:岩石标本的体积是625cm3。

【解析】【分析】根据1升=1立方分米=1000立方厘米,已知水的体积与水深,可以求出长方体水箱的底面积,水的体积÷深度=长方体水箱的底面积,然后用长方体水箱的底面积×上升的水的高度=这块岩石标本的体积,据此列式解答。

因篇幅问题不能全部显示,请点此查看更多更全内容