您的当前位置:首页大学物理实验之用三线摆测物体的转动惯量

大学物理实验之用三线摆测物体的转动惯量

2021-06-16 来源:乌哈旅游
 -

大学物理实验之用三线摆测物体的转动惯量

1、了解三线摆原理,并以此测物体的转动惯量。

2、掌握秒表、游标卡尺等测量工具的使用方法,掌握测周期的方法。 3、加深对转动惯量概念的理解。 1、三线摆测转动惯量的原理。 2、准确测量三线摆扭摆周期。 讲授、讨论与演示相结合。 3学时。

转动惯量是刚体转动惯性的量度,它的大小与物体的质量及其分布和转轴的位置 有关。对质量分布均匀、形状规则的物体,通过外形尺寸和质量的测量,就可以算出 其绕定轴的转动惯量,而质量分布不均匀、形状不规则物体的转动惯量则要由实验测 出。本实验利用三线摆测出圆盘和圆环对中心轴的转动惯量并与理论值进行比较。

三线扭摆法测量转动惯量的优点是:仪器简单,操作方便、精度较高。 一、实验目的

1、了解三线摆原理,并以此测物体的转动惯量。

2、掌握秒表、游标卡尺等测量工具的使用方法,掌握测周期的方法。 3、加深对转动惯量概念的理解。 二、实验仪器

三线摆仪,秒表,游标卡尺,钢直尺,水准器,待测圆环。 三、实验原理

三线摆实验原理如图所示,圆盘(下盘)由三根悬线悬挂于启动盘(上盘)之下,两圆盘圆心位于同一竖直轴上。轻扭上盘,在悬线扭力的作用下、圆盘可绕其中心竖轴作小幅扭摆运动。

设圆盘的质量为m0、上下盘的间距为H、上下盘的受力半径为r与R、圆盘的扭摆角为θ(θ很小)。

由于θ很小,所以圆盘在扭摆中升起的高度很小,可以认为在此过程中上下盘的间距H保持不变。在此情况下,根据三角关系可以导出悬线拉力N对圆盘的扭力矩为:

1

-

Mm0gRrSin/H。因为Sin,所以Mm0gRr/H。

设圆盘的转动惯量为J0,且M与角位移θ的 方向相反,根据转动定律可得:

A,rO,m0gRrd2MJ02

Hdt 由此可知圆盘的扭摆为简谐振动,解此微分 方程得圆盘的振动周期为:

NHHJ0 T02

m0gRrm0gRrT02 于是: J0 24H此即为圆盘对中心竖轴转动惯量的实验公式。

ARθO三线摆原理图

在圆盘上同心叠放上质量为m的圆环后,测出盘环系统的扭摆周期T,则盘环

(m0m)gRrT2系统的转动惯量为: J总J0J 24HgRr22由此可得圆环转动惯量的实验公式:JJ总J0mmTmT000 24H圆盘、圆环转动惯量的理论公式为:J0’112) m0R02、J’m(R12R222式中R0、R1、R2分别为圆盘半径及圆环的内外半径。 四、实验内容及步骤

1、用水准器调三线摆仪底座水平及下盘水平。

2、使下盘静止,然后朝同一方向轻转上盘,使下盘作小幅扭摆。控制摆角不超过5。 3、待下盘扭摆稳定后,用秒表测出连续摆动50个周期的时间,重复5次,然后算

出周期T0的平均值。

4、将圆环同心地放置于圆盘上,重复步骤2、3,测出周期T的平均值。 5、用钢直尺在不同位置测量上下盘之间的垂直距离5次。

用游标卡尺在不同位置分别测量上下盘悬线孔间距各5次。

2

-

计算H、a、b的平均值,并由此算出受力半径r与R的平均值。 6、用游标卡尺沿不同方向测量圆盘直径、圆环内外径各5次。

算出2R0、2R1、2R2的平均值。

7、记录圆盘、圆环的质量m0、m及本地的重力加速度g。 五、注意事项

1、调下圆盘水平时,松开固定悬线的螺母后要注意控制住调节悬线长度的螺母,防

止悬线滑落。

2、圆盘(或盘环)要在静止状态下开始启动,以防止在扭摆时出现晃动,圆盘扭摆 的角度θ须≤5。

3、圆盘(或盘环)启动后可连续测完5个50次周期,不必每次重新启动。 4、注意游标卡尺的零点修正、秒表与米尺的最小分度值及估读。 六、课堂指导

1、圆盘水平的调节方法。

2、圆盘启摆的要求、方法及摆幅控制。 3、圆盘扭摆周期的观察方法。 4、游标卡尺的使用方法。 七、思考题

1、三线摆的振幅受空气的阻尼会逐渐变小,它的周期也会随时间变化吗?

答:振幅反映出谐振的强度;周期反映的是谐振的频率,这是两个意义不同的物理量。 阻尼振动的周期T0

2022,阻尼系数是常数,所以周期不随时间而变化。

2、试分析:加了待测物之后,三线摆的扭摆周期是否一定大于空盘的扭摆周期?

mmT答:不一定。∵J0JJ0,∴m0mT2m0T02,或0·>1。

m0T0因为

m0mT>1,所以不一定大于1,即T不一定大于T0(可以大于、等于或小

T0m02于)。

3

-

八、数据处理 1、数据记录及表格

①下盘质量m0= 1.163 (kg); 园环质量m= 0.371 (kg);g = 9.781 m/s2

②几何尺寸测量:钢直尺最小分度值 1 mm; 游标卡尺最小

分度值 0.02 mm;零点修正值 0.00 mm

项目 Hi 次数 1 2 3 4 5 上下盘距离H(cm) 上盘孔间距a(mm) 3 a3下盘孔间距b(mm) 3 b3ai 76.02 76.10 75.16 76.10 75.16 75.71

rbi 160.28 160.30 160.28 160.30 160.28 160.29 R45.35 45.45 45.40 45.35 45.45 45.40 43.71 92.54 平 均 测量次数 下盘直径2R0 (mm) 园环内径2R1 (mm) 园环外径2R2 (mm) 1 190.38 100.30 150.16 2 190.36 100.30 150.16 3 190.38 100.28 150.18 4 190.36 100.30 150.16 5 190.38 100.30 150.16 平 均 190.37 100.30 150.16 ③周期测量:秒表最小分度值__0.1__s;零点修正值__0.00__s

项目 次数 1 2 3 4 5 下盘的周期T0(s) 50T0i 71.7 71.6 71.7 71.6 71.6 T0i 下盘加园环后的周期T(s) 50Ti 70.7 70.8 70.8 70.7 70.8 Ti 4

-

平 均

71.64 1.433 70.76 1.415 班级 序号 姓名 教师签字 日期

2、数据处理

①计算圆盘、圆环转动惯量的实验值J0、J

m0gRrT01.1639.78192.5443.711061.433232J05.27710kgm43.14245.4010242H

622gRr9.78192.5443.7110J2m0mTm0T01.1630.3712343.1445.40104H2321.41521.1631.43321.51010kgm

②计算圆盘、圆环转动惯量的理论值J0、J

211.163190.372106Jm0R05.268103kgm2

28’02210.371(100.302150.162)106Jm(R1R2)1.512103kgm2

28’’’③计算实验值与理论值的相对误差

’|J0J0|J’0100%0.17%

|J’J|J’100%0.13%

九、教学后记

1、用水准仪调圆盘水平时需要技巧,须对学生说明。

2、实验中要注意巡视,观察学生的操作,随时指出他们的问题。

3、周期测量是否准确对实验结果的影响最大,其次是孔间距。要说明圆盘(或盘环)

启摆的要求和方法,以及摆幅的要求。只有圆盘(或盘环)的扭摆合乎要求,才

5

-

能保证周期测量的准确性。测孔间距实际上是测两线孔中悬线间的距离,所以在测量中尺要注意对准悬线的位置。

6

因篇幅问题不能全部显示,请点此查看更多更全内容