资阳市2020—2021学年度高中二年级第一学期期末质量检测
文科数学
注意事项:
1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码贴在答题卡上对应的虚线框内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一
项是符合题目要求的。
x2y21. 已知P椭圆1上的动点,则P到该椭圆两焦点的距离之和为
164A.23 C.43
B.4 D.8
2. 已知命题p:xR,ex≥x1,则p为
A. xR,exx1 C. x0R,ex0≤x01
B. x0R,ex0≥x01 D. x0R,ex0x01
3. 在区间[3,4]上任取一个实数,则|x|≤1的概率为
16A. B.
7725C. D.
774. 已知x,yR,则“lnxlny”是“xy”的
A. 充分不必要条件 B. 必要不充分条件 C. 充要条件
D. 即不充分也不必要条件
5. 执行右图所示的程序框图,若输入的x为-4,则输出y的值为
A.0.5 B.1 C.2 D.4
1
6. 我市创建省级文明城市,需要每一位市民的支持和参与.为让全年级1000名同学更好的
了解创建文明城市的重大意义,学校用系统抽样法(按等距的原则)从高二年级抽取40名同学对全年级各班进行宣讲,将学生从1~1000进行编号,现已知第1组抽取的号码为13,则第5组抽取的号码为 A.88
x y A.50
2 30
4 40
B.113 D.173 5 57 B.54 D.64
6 a 8 69 C.138
7. 某商铺统计了今年5个月的用电量y(单位:10 kw/h)与月份x的对应数据,列表如下:
ˆ6.5x17.5,则上表中a的值为 根据表中数据求出y关于x的线性回归方程为yC.56.5
8. 若圆(x1)2(y3)24与圆(x2)2(y1)2a5外切,则a=
A.-4 C.4 程是
A.(x5)2y24 C.(x5)2y24
B.(x5)2y24 D.(x5)2y24
B.-1 D.11
9. 若圆心在x轴上,半径为2的圆C位于y轴左侧,且与直线2xy0相切,则圆C的方
10.已知m,n为两条不同的直线,,是两个不同的平面,下列命题为真命题的是
A.mn,m∥n B.n∥,n
C.m∥n,mn
D.m∥,nm∥n
x2y211.过椭圆221(ab0)的左顶点A作圆x2y2c2(2c是椭圆的焦距)两条切线,切
ab点分别为M,N,若∠MAN=60°,则该椭圆的离心率为
3231A. B. C. D.
322212.如图,棱长为3的正方体ABCD-A1B1C1D1中,P为正方体表面BCC1B1上的一个动点,E,F
分别为BD1的三等分点,则|PE||PF|的最小值为 A.33 C.16
B.52 2 D.11 2
二、填空题:本题共4小题,每小题5分,共20分。
x2y213. 椭圆1的右焦点坐标为_________.
8414.某几何体的三视图如图所示,则该几何体的体积为_________. 15.把一枚质地均匀的骰子投掷两次,第一次出现的点数为m,第二次出现
mxny5,的点数为n,设事件A为方程组2有唯一解,则事件A发生2xy1的概率为_________.
x216.若M,P是椭圆y21两动点,点M关于x轴的对称点为N,若直线PM,PN分别
4与x轴相交于不同的两点A(m,0),B(n,0),则mn=_________. 三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。 17.(10分)
命题p:曲线x2y22mx2my80表示一个圆;命题q:指数函数f(x)(2m1)x在定义域内为单调递增函数.
(1)若p为真命题,求实数m的取值范围;
(2)若pq为真,pq为假,求实数m的取值范围. 18.(12分)
x2y2已知曲线C:234},B{1,,23}. 1(a0,b0),集合A{1,,,ab(1)若a,bB,求曲线C为半径r≥2的圆的概率; (2)若aA,bB,求曲线C为焦点在x轴上的椭圆的概率.
19.(12分)
已知点P(-1,4),Q(3,2).
(1)求以PQ为直径的圆N的标准方程;
(2)过点M (0,2)作直线l与(1)中的圆N相交于A,B两点,若|AB|4,求直线l的方程.
3
20.(12分)
某次数学测试后,数学老师对该班n位同学的成绩进行分析,全班同学的成绩都分布在区间[95,145],制成的频率分布直方图如图所示.已知成绩在区间[125,135)的有12人.
(1)求n;
(2)根据频率分布直方图,估计本次测试该班的数学平均分(同一组数据用该组数据区间的中点值表示).
(3)现从[125,135),[135,145]两个分数段的试卷中,按分层抽样的方法共抽取了6份试卷.若从这6份试卷中随机选出2份作为优秀试卷,求选出2份优秀试卷中恰有1份分数在[135,145]的概率.
21.(12分)
如图,四棱锥S-ABCD的底面是正方形,SD平面ABCD,SD=2,AD=2,点E是线段SD上的点,且DE=a(0a≤2).
(1)求证:对任意的0a≤2,都有ACBE;
(2)当a1时,点M是SC上的点,且SM2MC,求三棱锥E-BCM的体积.
22.(12分)
x2y2已知椭圆C:221(ab0)右焦点F(1,0),A,B是分别为椭圆C的左、右顶点,
abP为椭圆的上顶点,三角形PAB的面积S2.
(1)求椭圆C的方程;
(2)直线l:y=x+m与椭圆交于不同的两点M,N,点Q(2,0),若∠MQO=∠NQO(O是坐标原点),求m的值.
4
资阳市2020—2021学年度高中二年级第一学期期末质量检测
文科数学参考答案及评分意见
评分说明:
1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则。
2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分。 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。 4.只给整数分。选择题和填空题不给中间分。 一、选择题:本大题共12小题,每小题5分,共60分。
1.D 7.B
2.D 8.C
3.C 9.B
4.A 10.C
5.C
6.B 12.D
11.A
二、填空题:本大题共4小题,每小题5分,共20分。
13.(2,0)
14.1000π 15.
1 1816.4
三、解答题:本大题共6个小题,共70分。
17.(10分)
方程x2y22mx2my80即为(xm)2(ym)22m28, ··················· 1分 (1) 由p为真命题,得2m280, ·························································· 2分 解得m2或m2, 则m的取值范围是(,2)···················································· 4分 (2,). ·
(2) 由(1)可知,p为真命题是m范围为m2或m2,
当q为真命题时,2m11,解得m1, ················································· 6分 由pq为真,pq为假,则p,q中有且仅有一个为真命题. ····················· 7分 当p为真,q为假时m的范围为:m2, 当p为假,q为真时m的范围为:1m2, 综上:m的取值范围是(,2)18.(12分)
5
··················································· 10分 (1,2]. ·
(1) 由a,bB得,a,b所有的取值可能为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共9种. ···························································· 3分
满足曲线C轨迹为圆且半径r2有(2,2),(3,3)两种. ···························· 5分 所以,概率P
2
.··············································································· 6分 9
(2) 由aA,bB,a,b所有取值可能有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3)共12种. ···························· 9分
满足曲线C为椭圆且焦点在x轴上的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种. ··································································································· 11分
所以概率P
1
.·················································································· 12分 2
19.(12分)
(1) 方法1:以PQ为直径的圆方程为(x3)(x1)(y2)(y4)0, ············· 4分 化解得x22xy26y50,
则圆N的标准方程为(x1)2(y3)25.················································ 5分 方法2:圆心N的坐标(1,3),直径2r|PQ|422225, ······················· 4分 则圆N的标准方程为(x1)2(y3)25.················································ 5分 (2) ①当直线斜率不存在时,方程为x0,解得y15,y21,AB4,满足, ········································································································· 7分 ②当斜率存在时,设直线方程为:ykx2, 设圆心到直线距离为d,由d2(即d2225,得d1, 由dk11k2AB2)R2, 21,解得k0, ······························································· 11分
所以直线方程为x0或y2, ······························································· 12分 20.(12分) (1)由题可知:n12, ····················································· 3分 60(人)
0.0210(2) x1000.151100.251200.31300.21400.1118.5, ··············· 7分
6
(3)有直方图可知:成绩分布在125,135有12人,在135,145有6人, 抽取比例为
61, 183所以125,135内抽取人数为4人,135,145抽取人数为2人. ························ 8分 记125,135中4人为a,b,c,d,记135,145的2人分别为e,f,
则所有的抽取结果为:(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15种, ·························· 10分
恰有一份分数段在135,145有(a,e),(a,f),(b,e),(b,f),(c,e),(c,f),(d,e),(d,f)共8种. ··················································································· 11分
所以,概率P21.(12分)
(1) 连接BD,由ABCD是正方形, 则ACBD, 又SD平面ABCD. 则ACSD,SD8. ············································································· 12分 15BDD,
所以AC面SBD,又BE面SBD,
所以ACBE. ··················································································· 5分
1(2) 由题VEBCMVBECMSECMh, ······················································ 6分
3易知BC面SDC,所以hBC2, ···················································· 8分 1112, ······················································ 10分 SECMSSDC2266261121则VEBCMSECMh·················································· 12分 2. ·
336922.(12分)
(1) 由题:c=1,A(a,0),B(a,0),设P(0,b), 则ab2,又a2b2c2, 代入可得a22,b21,
x2所以椭圆方程为y21 ····································································· 5分
2
7
yxm,(2) 联立方程组x2 2y1,2得3x24mx2m220,设M(x1,y1),N(x2,y2),
4mxx,123则 ················································································ 7分 2xx2m2,123由∠MQO=∠NQO,可得kMQkNQ0, ··················································· 8分 即
y1yxmx2m2x1x2(m2)(x1x2)4m210, x12x22x12x22(x12)(x22)即2x1x2(m2)(x1x2)4m0,解得m1. ··········································· 12分
8
因篇幅问题不能全部显示,请点此查看更多更全内容