1.累加、累乘法
例1:数列an满足:a11,且an1an2n1,求an. 【答案】an2nn2.
【解析】an1an2n1,anan12n11,L,a2a1211,
累加可得:ana122L22n1n122n1121n12nn3,
an2nn2.
2.Sn与an的关系的应用
22Sn例2:在数列an中,a11,an,则an的通项公式为_________.
2Sn111,n2【答案】an2n12n3.
n11,【解析】∵当n2,nN时,anSnSn1,
2Sn2SnSn12Sn2Sn2SnSn1Sn12Sn2,
2Sn1整理可得:Sn1Sn2SnSn1,112, SnSn1111为公差为2的等差数列,n122n1,
SnS1Sn11,n21Sn,an2n12n3.
2n1n11,
3.构造法
例3:数列an中,a11,an3an12,求数列an的通项公式. 【答案】an23n11.
【解析】设an3an1即an3an12,对比an3an12,可得1, an13an11,an1是公比为3的等比数列,
an1a113n1,an23n11.
对点增分集训
一、单选题 1.由a11,an1A.
1 100an给出的数列an的第34项是( ) 3an1B.100 C.
34 103D.
1 4【答案】A
【解析】由a11,an1an, 3an111111174,a4, ,a3则a21131431731104711111013a5,a6,L,
11311331161013由此可知各项分子为1,分母构成等差数列bn,首项b11,公差为d3, ∴b34b1341d1333100,∴a52.数列an满足a1A.
1 21,故选A. 1001a11,n1,则a2018等于( )
an2B.1 C.2 D.3
【答案】B
【解析】n1时,a2121,a3112,a41∴数列的周期是3,∴a2018a33722a21.故选B.
11,a5121, 223.在数列an中,若a12,且对任意正整数m、k,总有amkamak,则an的前n项和为Sn( ) A.n3n1 B.
nn33n12
C.nn1
D.
n2
【答案】C
【解析】递推关系amkamak中,令k1可得:am1ama1am2, 即am1am2恒成立,
据此可知,该数列是一个首项a12,公差d2的等差数列, 其前n项和为:Snna1nn12d2nnn122nn1.故选C.
4.数列an项和为Sn的前n,若Sn2n1nN,则a2017的值为( )
A.2 B.3 C.2017 D.3033
【答案】A
【解析】a2017S2017S20162,故选A.
5.已知数列an是递增数列,且对nN,都有ann2n,则实数的取值范围是( A.72,
B.1, C.2, D.3,
【答案】D
【解析】∵an是递增数列,∴an1an,
∵a2nn2n恒成立,即n1n1n2n,
∴2n1对于nN恒成立,而2n1在n1时取得最大值3, ∴3,故选D.
6.在数列an中,已知a2an112,ana2,n2,则an等于( )
n1A.
2n1 B.
2n C.
3n D.
3n1 【答案】B 【解析】将等式aan111n2a两边取倒数得到1,111, n12anan12anan121111a是公差为的等差数列,n2a,
12
) 111n2n1,故an.故选B. 根据等差数列的通项公式的求法得到
an222n17.已知数列an的前n项和Sn,若a11,Snan1,则a7( )
3A.47 【答案】B
B.345 C.346 D.461
1111【解析】由Snan1,可得Sn1an,n2.两式相减可得:anan1an,n2.
3333即an14an,n2.数列an是从第二项起的等比数列,公比为4, 1又Snan1,a11.∴a23,S13.∴a7a2472345.故选B.
318.已知Fxfx2是R上的奇函数,anf021n1fLff1,nnnN则数列an的通项公式为( )
A.ann 【答案】B
B.an2n1
C.ann1 D.ann22n3
1【解析】由题已知Fxfx2是R上的奇函数,
211故FxFx,代入得:fxfx4,xR,
221
∴函数fx关于点,2对称,
2
11令tx,则x1t,得到ftf1t4,
221n1∵anf0fLff1,anf1nnn11fLff0, nn倒序相加可得2an4n1,即an2n1,故选B. 9.在数列an中,若a10,an1an2n,则A.
n1 n111L的值( ) a2a3anB.
n1 nC.
n1 n1D.
n n1【答案】A
【解析】由题意,数列an中,若a10,an1an2n,
则ananan1an1an2La2a1a1212Ln1nn1,
1111∴, annn1n1n∴
11111111n11L1L1,故选A. a2a3an223nnn1nn110.已知数列an的首项a11,且满足an1annN,如果存在正整数n,
2使得anan10成立,则实数的取值范围是( ) 12 A.,221 B.,311 C.,225D.,
36【答案】C
【解析】由题意n2时,
111ana1a2a1a3a2Lanan11L2222n121132n,
由anan10,即anan10, 21aaaaa1∴2k2k1且2k2k1,kN,2k322k2112k, 322k12121231其中最小项为a21,a2k1112k1,
3423232其中最大项为a11,因此
11.故选C. 2n*11.已知数列an满足a11,an1an2nN,Sn是数列an的前n项和,则( )
A.a201822018
B.S20183210093 D.数列an是等比数列
C.数列a2n1是等差数列 【答案】B
n*【解析】数列数列an满足a11,an1an2nN,
当n2时,anan12n1两式作商可得:
an12, an1∴数列an的奇数项a1,a3,a5,L,成等比,偶数项a2,a4,a6,L,成等比,
对于A来说,aa22201812201822100821009,错误;
对于B来说,S2018a1a3La2017a2a4La2018
1121009122121009123210093,正确;
对于C来说,数列a2n1是等比数列,错误; 对于D来说,数列an不是等比数列,错误, 故选B.
12.已知数列an满足:a11,an1ab125,
an1nN.设bn1n21nN,n2an且数列bn是单调递增数列,则实数的取值范围是( ) 2 A.,3B.1,
2, C.112 D.1,【答案】B
【解析】∵数an满足:a11,an1annN. an212121,化为12, an1anan1an11∴数列1是等比数列,首项为12,公比为2,
a1an∴
1112n,bn1n21n22n, anan∵b125,且数列bn是单调递增数列,
2∴b2b1,∴1225,解得12,
由bn2bn1,可得n1,对于任意的nN恒成立, 233,故答案为1.故选B. 22
二、填空题
13.已知数列an的前n项和为Sn,且Snn22n,则an___________. 【答案】2n1
【解析】数列an的前n项和为Sn,且Snn22n, Sn1n122n1,两式想减得到an2n1.
此时n1,检验当n1时,a13符合题意,故an2n1.故答案为an2n1.14.数列an中,若a11,ann1n1an,则an______. 【答案】
1n 【解析】∵an11,an1n1an,则n1an1nana11, ∴a11nn.故答案为n. 15.设数列ann满足nan1n1ann2nN,a112,an___________.n2【答案】n1
【解析】∵nan1n1annn2nN, an1n1an111nn2n1n1n2, ∴
anan11ann1n1n1,a22a111213,累加可得nna1112n1, ∵a11,an12n1n1nn1,
an2n2∴nn1.故答案为ann1.
16.已知数列
an满足
a12,
4an154an131a111_______. 11a21a31an1【答案】3n122n32 【解析】令bn4an1,则bn14an11,
则
,由题意可得bn11bn33, 即bnbn13bn1bn0,整理可得
111,则cn13cn1,由题意可得cn13cn, bn221111313n1c且1,c1,故cn3,
b14a1142424311, bnbn1令cn即cn1bn1n1b1413n2, 3,na1,,nnncn3242432an111113n1323nL333L32n2n. 据此可知
a11a21a31an122
三、解答题
22an4Sn. 17.已知各项均为正数的数列an的前n项和为Sn,且an(1)求Sn; (2)设bn1n1nSn,求数列的前n项和Tn.
bn【答案】(1)Snn2n;(2)Tn11n1.
2an2an4Sn【解析】(1)由题意得2,两式作差得an1anan1an20,
an12an14Sn1又数列an各项均为正数,∴an1an20,即an1an2, 当n1时,有a122a14S14a1,得a1a120,则a12, 故数列an为首项为2公差为2的等差数列,∴Snna11(2)bnnnn12dn2n.
1n1n1Snn1nnn11n1n1,
n1111)1∴Tn(.
ii1n1i1bii1218.在数列an中,a14,nan1n1an2n2n.
an(1)求证:数列是等差数列;
n1(2)求数列的前n项和Sn.
an
【答案】(1)见解析;(2)Snn.
2n12【解析】(1)nan1n1an2n2n的两边同时除以nn1,得
an1an2nN, n1nan∴数列是首项为4,公差为2的等差数列
na(2)由(1),得n2n2,
n∴an2n22n,故
111n1n1112, an2n2n2nn12nn1∴Sn1111111 2223nn1111111111n112n23n1232n12n1.
因篇幅问题不能全部显示,请点此查看更多更全内容