您的当前位置:首页广东高考数学历年真题----推理与证明(理)

广东高考数学历年真题----推理与证明(理)

2020-08-15 来源:乌哈旅游


推理与证明(理) 1.(2007广东省7)图3是某汽车维修公司的维修点分布图,公司在年初分配给A、B、C、D四个维修点的某种配件各50件,在使用前发现需将A、B、C、D四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进行,那么完成上述调整,最少的调动件次(n个配件从一个维修点调整到相邻维修点的调动件次为n)为 (A)15 (B)16 (C)17 (D)18

【解析】若按原定的分配,A点余10件,B点余5件,C点却4件,D点却11件。要使调动件次最少,须考虑从最近的点调到最多的缺件到所缺处,而D却的最多,与之相邻的点C也是剩余最多的,应优先考虑由C点的余货全数补给D点,再考虑由B点的填补临近点C的不足再去填补经C补给后D点的不足,这就能使得调动件次最少。

答案:B 2.(2007广东省12)如果一个凸多面体是n棱锥,那么这个凸多面体的所有顶点所确定的直线共有_____条,这些直线中共有f(n)对异面直线,则f(4)____;f(n)=______(答案用数字或n的解析式表示)

【解析】当多面体的棱数由n增加到n+1时,所确定的直线的条数将增加n+1,由递推关系f(n+1) -f(n)=n+1我们能够求出答案。从图中我们明显看出四棱锥中异面直线的对数为12对。能与棱锥每棱构成异面关系的直线的条数为

答案:

3.(2010广东省8)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定,每个彩灯彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同.记这5个彩灯有序地闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒。如果要实现所有不同的闪烁,那么需要的时间至少是( )

A、 1205秒 B.1200秒 C.1195秒 D.1190秒

3.C.每次闪烁时间5秒,共5×120=600s,每两次闪烁之间的间隔为5s,共5×(120-1)

=595s.总共就有600+595=1195s.

(n2)(n1),进而得到f(n)的表达式。

2n(n1)n(n2)(n1),12, 22 1

因篇幅问题不能全部显示,请点此查看更多更全内容